

 [image: _images/doma.png]
 [https://github.com/domaframework/doma]
Welcome to Doma 2

Doma 2 is a database access framework for Java 8+.
Doma has various strengths:

	Verifies and generates source code at compile time using annotation processing.

	Provides type-safe Criteria API.

	Supports Kotlin.

	Uses SQL templates, called “two-way SQL”.

	Has no dependence on other libraries.

This document consists of following sections:

	User Documentation

	About Doma

	Links

Help improve our documentation

Have feedback or a question? Found a typo?

Please add an issue or pull request to
https://github.com/domaframework/doma and we’ll get back to you.

User Documentation

	Getting started
	Summary

	Install JDK

	Get sample project

	Sample project structure

	Import project to your IDE

	Programming styles

	DSL style

	DAO style

	Next Step

	Configuration
	Configurable items

	Loading JDBC drivers

	Configuration definition

	Basic classes
	Overview

	List of basic classes

	Examples

	Domain classes
	Internal domain classes

	External domain classes

	Example

	Embeddable classes
	Embeddable definition

	Field definition

	Method definition

	Example

	Entity classes
	Entity definition

	Field definition

	Method definition

	Example

	Dao interfaces
	Dao definition

	Query definition

	Default method

	Example

	Queries
	Search

	Insert

	Update

	Delete

	Batch insert

	Batch update

	Batch delete

	Stored function

	Stored procedure

	Factories

	Script

	SQL processor

	Query builders
	Search

	Insert

	Update

	Delete

	Criteria API
	Introduction

	Select statement

	Delete statement

	Insert statement

	Update statement

	Property expressions (Entityql, NativeSql)

	Tips

	Sample projects

	SQL templates
	Overview

	SQL templates in files

	SQL templates in annotations

	Directives

	Comments

	Expression language
	Literals

	Comparison operators

	Logical operators

	Arithmetic operators

	String concatenation operator

	Calling instance methods

	Accessing to instance fields

	Calling static methods

	Accessing to static fields

	Using built-in functions

	Using custom functions

	Transaction
	Configuration

	Usage

	Building an application
	Before You Start

	Build with Gradle

	Build with IntelliJ IDEA

	Build with Eclipse

	Annotation processing
	Options

	Setting options in Gradle

	Setting options in IntelliJ IDEA

	Setting options in Eclipse

	Setting options with configuration file

	Lombok support
	Overview

	Best practices

	Kotlin support
	Best practices

	Sample project

	SLF4J support
	Overview

	Gradle

	Configuration

	Loggers

	Examples

About Doma

	Frequently Asked Questions

Links

	News and announcements [https://twitter.com/domaframework]

	GitHub repository [https://github.com/domaframework/doma]

	Release Notes [https://github.com/domaframework/doma/releases]

	JavaDoc [https://www.javadoc.io/doc/org.seasar.doma/doma-core/latest/index.html]

	Boilerplate [https://github.com/domaframework/simple-boilerplate]

	Examples [https://github.com/domaframework/simple-examples]

	Doma Compile Plugin [https://github.com/domaframework/doma-compile-plugin]

	Doma CodeGen Plugin [https://github.com/domaframework/doma-codegen-plugin]

	Doma version 1 [http://doma.seasar.org/]

Getting started

Contents

	Getting started

	Summary

	Install JDK

	Get sample project

	Sample project structure

	Import project to your IDE

	Eclipse

	IntelliJ IDEA

	Programming styles

	DSL style

	SELECT

	DELETE

	INSERT

	UPDATE

	DAO style

	SELECT (DAO)

	DELETE (DAO)

	INSERT (DAO)

	UPDATE (DAO)

	Next Step

Summary

We will introduce how to set up the development environment and basic functions.

Install JDK

In this Getting started, you need JDK 15.

Note

Doma supports JDK 8 and later.
See also Which version of JDK does Doma support?.

Get sample project

Clone getting-started [https://github.com/domaframework/getting-started] repository and change the current directory:

$ git clone https://github.com/domaframework/getting-started.git
$ cd getting-started

Make sure the following command is successful:

$./gradlew build

Note

In Windows, run gradlew eclipse instead of ./gradlew eclipse.

Sample project structure

getting-started is a Gradle multi-project and it has following two sub-projects:

	java-8

	java-15

These projects are almost the same.
However the java-8 project stores SQL statements in files
and the java-15 project stores them in Text Blocks.

Below, we will only talk about the java-15 project.

Import project to your IDE

Eclipse

We tested Eclipse 2020-09.
Note that you need a patch [https://marketplace.eclipse.org/content/java-15-support-eclipse-2020-09-417]
to enable Java 15 features.
See also this movie [https://www.youtube.com/watch?v=-qsW-0Ztg_U].

Before importing, generate eclipse files as follows:

$./gradlew eclipse

Then import the java-8 and java-15 projects to your workspace.

Note

If you want to store SQL statements in files, Doma Tools [https://marketplace.eclipse.org/content/doma-tools] can help you.
See the old documentation [https://doma.readthedocs.io/en/2.42.0/getting-started-eclipse/#install-doma-tools-that-is-eclipse-plugin] for more information.

IntelliJ IDEA

We tested IntelliJ IDEA Community 2020.2.

Import getting-started to your IDEA as a Gradle project.

Note

If you use IntelliJ IDEA Ultimate Edition,
Doma Support [https://plugins.jetbrains.com/plugin/7615-doma-support] can help you.

Programming styles

Doma supports two programming styles as follows:

	DSL style

	DAO style

DSL style allows you to build type-safe SQL statements with the Criteria API.
DAO style allows you to map SQL statements to methods defined in the Java interface.

We recommend you prefer the DSL style.
This is because the Criteria API, which enables the DSL style, has many advantages.
For example, the Criteria API does not use reflection.
It also supports associations such as one-to-many, many-to-one, one-to-one.

DSL style

You can find some examples in boilerplate.java15.repository.EmployeeRepository.
See Criteria API for more information.

SELECT

To issue a SELECT statement and get results as Java objects, write as follows:

public Employee selectById(Integer id) {
 var e = new Employee_();
 return entityql.from(e).where(c -> c.eq(e.id, id)).fetchOne();
}

Employee_ is metamodel class of Employee entity class.
Metamodel classes are generated by annotation processing.

The instance entityql of Entityql class is an entry point of the Criteria API.

The above code generates the following SQL statement:

select t0_.id, t0_.name, t0_.age, t0_.version from Employee t0_ where t0_.id = ?

DELETE

To issue a DELETE statement, write as follows:

public void delete(Employee employee) {
 var e = new Employee_();
 entityql.delete(e, employee).execute();
}

INSERT

To issue an INSERT statement, write as follows:

public void insert(Employee employee) {
 var e = new Employee_();
 entityql.insert(e, employee).execute();
}

UPDATE

To issue an UPDATE statement, write as follows:

public void update(Employee employee) {
 var e = new Employee_();
 entityql.update(e, employee).execute();
}

DAO style

You can find some examples in boilerplate.java15.dao.EmployeeDao.
See Dao interfaces and SQL templates for more information.

SELECT (DAO)

To issue a SELECT statement and get results as Java objects, write as follows:

@Sql("""
 select
 /*%expand*/*
 from
 employee
 where
 id = /* id */0
 """)
@Select
Employee selectById(Integer id);

You can write the SQL template in @Sql using Text Block.

This SQL template contains two special expressions, /*%expand*/ and /* id */.
In process of SQL template, /*%expand*/ and the following * are replaced with column list.
And /* id */ and the following 0 are replaced with the bind variable ?.
The bound value is the id parameter of the selectById method.

The above code generates the following SQL statement:

select
 id, name, age, version
from
 employee
where
 id = ?

DELETE (DAO)

To issue a DELETE statement, write as follows:

@Delete
int delete(Employee employee);

INSERT (DAO)

To issue an INSERT statement, write as follows:

@Insert
int insert(Employee employee);

UPDATE (DAO)

To issue an UPDATE statement, write as follows:

@Update
int update(Employee employee);

Next Step

See other example projects:

	simple-examples [https://github.com/domaframework/simple-examples]

	spring-boot-jpetstore [https://github.com/domaframework/spring-boot-jpetstore]

Configuration

Contents

	Configuration

	Configurable items

	DataSource

	DataSource’s name

	SQL dialect

	Logger

	SQL File Repository

	Controlling REQUIRES_NEW transaction

	Loading classes

	Choosing SQL format contained in exception messages

	Handling unknown columns

	Naming convention for tables and columns

	Naming convention for keys of java.util.Map

	Local transaction manager

	Adding SQL identifiers to the SQLs as a comment

	Command implementors

	Query implementors

	Query timeout

	Max rows

	Fetch size

	Batch size

	Providing entity listeners

	Loading JDBC drivers

	Configuration definition

	Simple definition

	Advanced definition

The configurable items must be returned from the methods of the implementation class of
the org.seasar.doma.jdbc.Config interface.

Configurable items

DataSource

Return a JDBC DataSource from the getDataSource method.
If you need local transactions provided by Doma, return a LocalTransactionDataSource.

See also: Transaction

Note

Required item

DataSource’s name

Return a DataSource’s name from the getDataSourceName method.
In the environment where multiple DataSources are used, the name is important.
You have to give an unique name to each DataSource.

The default value is the full qualified name of the implementation class of Config.

SQL dialect

Return a Dialect from the getDialect method.
You have to choose an appropriate dialect for the database you use.

Doma provides following dialects:

	Database

	Dialect Name

	Description

	DB2

	Db2Dialect

	

	H2 Database Engine 1.2.126

	H212126Dialect

	H2 Database Engine 1.2.126

	H2 Database

	H2Dialect

	H2 Database Engine 1.3.171 and above

	HSQLDB

	HsqldbDialect

	

	Microsoft SQL Server 2008

	Mssql2008Dialect

	Microsoft SQL Server 2008

	Microsoft SQL Server

	MssqlDialect

	Microsoft SQL Server 2012 and above

	MySQL

	MySqlDialect

	

	Oracle Database 11g

	Oracle11Dialect

	Oracle Database 11g

	Oracle Database

	OracleDialect

	Oracle Database 12g and above

	PostgreSQL

	PostgresDialect

	

	SQLite

	SqliteDialect

	

These dialect are located in the org.seasar.doma.jdbc.dialect package.

Note

Required item

Logger

Return a JdbcLogger from the getJdbcLogger method.

Doma provides following JdbcLogger:

	org.seasar.doma.jdbc.UtilLoggingJdbcLogger

The default JdbcLogger is UtilLoggingJdbcLogger which uses java.util.logging.

SQL File Repository

Return a SqlFileRepository from the getSqlFileRepository method.

Doma provides following SqlFileRepositories:

	org.seasar.doma.jdbc.GreedyCacheSqlFileRepository

	org.seasar.doma.jdbc.NoCacheSqlFileRepository

The default SqlFileRepository is GreedyCacheSqlFileRepository
which caches the result of SQL parsing without limitation.

Controlling REQUIRES_NEW transaction

Return a RequiresNewController from the getRequiresNewController method.
RequiresNewController may begin new transactions to makes transaction locked time shorter.

This feature is used only when you use @TableGenerator which generates identities with the table.

The default RequiresNewController does nothing.

Loading classes

Return a ClassHelper from the getClassHelper method.

When the application server and framework you use loads classes with their specific way,
consider to create your own ClassHelper.

The default ClassHelper loads classes with Class#forName mainly.

Choosing SQL format contained in exception messages

Return a SqlLogType from the getExceptionSqlLogType.
The default SqlLogType contains the formatted SQL in exception messages.

Handling unknown columns

Return a UnknownColumnHandler from the getUnknownColumnHandler method.
In result set mappings, if an unknown column to an entity class is found,
the UnknownColumnHandler handles the situation.

The default UnknownColumnHandler throws an UnknownColumnException.

Naming convention for tables and columns

Return a Naming from the getNaming method.
The naming element of @Entity have preference over this value.
When you specify explicit value to the name elements of @Table and @Column,
the naming convention is not applied to them.

The default Naming does nothing.

Naming convention for keys of java.util.Map

Return a MapKeyNaming from the getMapKeyNaming method.
The MapKeyNaming is used when the result set is mapped to java.util.Map<String, Object>.

The default MapKeyNaming does nothing.

Local transaction manager

Return a LocalTransactionManager from the getTransactionManager method.
The getTransactionManager method throws UnsupportedOperationException as default.

See also: Transaction

Adding SQL identifiers to the SQLs as a comment

Return a Commenter from the getCommenter method.

Doma provides following commenter:

	org.seasar.doma.jdbc.CallerCommenter

The default Commenter does nothing.

Command implementors

Return a CommandImplementors from the getCommandImplementors method.
For example, the CommandImplementors provides you a hook to execute JDBC API.

Query implementors

Return a QueryImplementors from the getQueryImplementors method.
For example, the QueryImplementors provides you a hook to rewrite SQL statements.

Query timeout

Return the query timeout (second) from the getQueryTimeout method.
This value is used as default in Queries.

Max rows

Return the max rows from the getMaxRows method.
This value is used as default in Search.

Fetch size

Return the fetch size from the getFetchSize method.
This value is used as default in Search.

Batch size

Return the batch size from the getBatchSize method.
This value is used as default in Batch insert,
Batch update and Batch delete.

Providing entity listeners

Return a EntityListenerProvider from the getEntityListenerProvider method.
When you want to get entity listeners from a dependency injection container,
create your own EntityListenerProvider.

The default EntityListenerProvider get the entity listener from the accepted supplier.

Loading JDBC drivers

All JDBC drivers are loaded automatically by the service provider [https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#Service_Provider] mechanism.

Warning

But in the specific environment, the mechanism doesn’t work appropriately.
For example, when you use Apache Tomcat, you will find the case.
See also: DriverManager, the service provider mechanism and memory leaks [http://tomcat.apache.org/tomcat-7.0-doc/jndi-datasource-examples-howto.html#DriverManager,_the_service_provider_mechanism_and_memory_leaks]

Configuration definition

Simple definition

The simple definition is appropriate in following cases:

	The configuration instance isn’t managed in the dependency injection container

	Local transactions is used

public class DbConfig implements Config {

 private static final DbConfig CONFIG = new DbConfig();

 private final Dialect dialect;

 private final LocalTransactionDataSource dataSource;

 private final TransactionManager transactionManager;

 private DbConfig() {
 dialect = new H2Dialect();
 dataSource = new LocalTransactionDataSource(
 "jdbc:h2:mem:tutorial;DB_CLOSE_DELAY=-1", "sa", null);
 transactionManager = new LocalTransactionManager(
 dataSource.getLocalTransaction(getJdbcLogger()));
 }

 @Override
 public Dialect getDialect() {
 return dialect;
 }

 @Override
 public DataSource getDataSource() {
 return dataSource;
 }

 @Override
 public TransactionManager getTransactionManager() {
 return transactionManager;
 }

 public static DbConfig singleton() {
 return CONFIG;
 }
}

You can use the above DbConfig class as follows:

EmployeeDao dao = new EmployeeDaoImpl(DbConfig.singleton());

The above EmployeeDao interface must be annotated with the @Dao annotation as follows:

@Dao
public interface EmployeeDao {

 @Select
 Employee selectById(Integer id);
}

Advanced definition

The advanced definition is appropriate in following cases:

	The configuration instance is managed as a singleton object in the dependency injection container

	The transaction manager is provided from the application server or framework you use

Suppose the dialect and the dataSource are injected by the dependency injection container:

public class DbConfig implements Config {

 private Dialect dialect;

 private DataSource dataSource;

 @Override
 public Dialect getDialect() {
 return dialect;
 }

 public void setDialect(Dialect dialect) {
 this.dialect = dialect;
 }

 @Override
 public DataSource getDataSource() {
 return dataSource;
 }

 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 }
}

To inject the instance of the above class to your DAO implementation instance,
you have to annotate your DAO interfaces with @AnnotateWith:

@Dao
@AnnotateWith(annotations = {
 @Annotation(target = AnnotationTarget.CONSTRUCTOR, type = javax.inject.Inject.class),
 @Annotation(target = AnnotationTarget.CONSTRUCTOR_PARAMETER, type = javax.inject.Named.class, elements = "\"config\"") })
public interface EmployeeDao {

 @Select
 Employee selectById(Integer id);
}

@Dao
@AnnotateWith(annotations = {
 @Annotation(target = AnnotationTarget.CONSTRUCTOR, type = javax.inject.Inject.class),
 @Annotation(target = AnnotationTarget.CONSTRUCTOR_PARAMETER, type = javax.inject.Named.class, elements = "\"config\"") })
public interface DepartmentDao {

 @Select
 Department selectById(Integer id);
}

To avoid annotating your DAO interfaces with @AnnotateWith repeatedly,
annotate the arbitrary annotation with it only once:

@AnnotateWith(annotations = {
 @Annotation(target = AnnotationTarget.CONSTRUCTOR, type = javax.inject.Inject.class),
 @Annotation(target = AnnotationTarget.CONSTRUCTOR_PARAMETER, type = javax.inject.Named.class, elements = "\"config\"") })
public @interface InjectConfig {
}

Then, you can annotate your DAO interfaces with the above @InjectConfig annotation:

@Dao
@InjectConfig
public interface EmployeeDao {

 @Select
 Employee selectById(Integer id);
}

@Dao
@InjectConfig
public interface DepartmentDao {

 @Select
 Department selectById(Integer id);
}

Basic classes

Contents

	Basic classes

	Overview

	List of basic classes

	Differences between temporal classes

	Examples

	Using in entity class

	Using in domain class

	Using in DAO interface

Overview

The Java types can be mapped to database column types are called “Basic classes” in Doma.

List of basic classes

	primitive types except char

	wrapper class for above primitive types

	enum types

	byte[]

	java.lang.String

	java.lang.Object

	java.math.BigDecimal

	java.math.BigInteger

	java.time.LocalDate

	java.time.LocalTime

	java.time.LocalDateTime

	java.sql.Date

	java.sql.Time

	java.sql.Timestamp

	java.sql.Array

	java.sql.Blob

	java.sql.Clob

	java.sql.SQLXML

	java.util.Date

Differences between temporal classes

	java.time.LocalDate

	represents SQL DATE

	java.time.LocalTime

	represents SQL TIME

	java.time.LocalDateTime

	represents SQL TIMESTAMP and may hold nanoseconds if RDBMS supports it

	java.sql.Date

	represents SQL DATE

	java.sql.Time

	represents SQL TIME

	java.sql.Timestamp

	represents SQL TIMESTAMP and may hold nanoseconds if RDBMS supports it

	java.util.Date

	represents SQL TIMESTAMP and doesn’t hold nanoseconds

Examples

Using in entity class

@Entity
public class Employee {

 @Id
 Integer employeeId;

 Optional<String> employeeName;

 @Version
 Long versionNo;

 ...
}

Using in domain class

@Domain(valueType = String.class)
public class PhoneNumber {

 private final String value;

 public PhoneNumber(String value) {
 this.value = value;
 }

 public String getValue() {
 return value;
 }
}

Using in DAO interface

@Dao
public interface EmployeeDao {

 @Select
 Employee selectById(Integer employeeId);

 @Select
 List<String> selectAllName();
}

Domain classes

Contents

	Domain classes

	Internal domain classes

	Instantiation with a constructor

	Instantiation with a static factory method

	Using type parameters in internal domain classes

	External domain classes

	Using type parameters in external domain classes

	Example

A domain class represents a table column and it allows you to handle the column value as a Java object.
In the Doma framework, a domain means all the values which a data type may contain.
In short, a domain class is a user defined class that can be map to a column.
The use of the domain classes is optional.

Every domain class is either an internal domain class or an external domain class.

Internal domain classes

The internal domain class must be annotated with @Domain.
The @Domain’s valueType element corresponds to a data type of a column.
Specify any type of Basic classes to the valueType element.

Instantiation with a constructor

The default value of the @Domain’s factoryMethod element is new.
The value new means that the object of annotated class is created with a constructor.

@Domain(valueType = String.class)
public class PhoneNumber {

 private final String value;

 public PhoneNumber(String value) {
 this.value = value;
 }

 public String getValue() {
 return value;
 }

 public String getAreaCode() {
 ...
 }
}

Note

In Java 14 and later version, you can annotate records [https://openjdk.java.net/jeps/359] with @Domain:

@Domain(valueType = String.class, accessorMethod = "value")
public record PhoneNumber(String value) {
 public String getAreaCode() {
 ...
 }
}

Warning

To annotate records with @Domain is a little redundant,
because you must specify some properties to @Domain such as valueType.
Instead of @Domain, you can annotate records with @DataType:

@DataType
public record PhoneNumber(String value) {
 public String getAreaCode() {
 ...
 }
}

But note that @DataType is an experimental feature.

Instantiation with a static factory method

To create the object of annotated class with a static factory method,
specify the method name to the @Domain’s factoryMethod element.

The method must be static and non-private:

@Domain(valueType = String.class, factoryMethod = "of")
public class PhoneNumber {

 private final String value;

 private PhoneNumber(String value) {
 this.value = value;
 }

 public String getValue() {
 return value;
 }

 public String getAreaCode() {
 ...
 }

 public static PhoneNumber of(String value) {
 return new PhoneNumber(value);
 }
}

With a static factory method, you can apply the @Domain annotation to enum types:

@Domain(valueType = String.class, factoryMethod = "of")
public enum JobType {
 SALESMAN("10"),
 MANAGER("20"),
 ANALYST("30"),
 PRESIDENT("40"),
 CLERK("50");

 private final String value;

 private JobType(String value) {
 this.value = value;
 }

 public static JobType of(String value) {
 for (JobType jobType : JobType.values()) {
 if (jobType.value.equals(value)) {
 return jobType;
 }
 }
 throw new IllegalArgumentException(value);
 }

 public String getValue() {
 return value;
 }
}

Using type parameters in internal domain classes

All internal domain class declarations have type parameters:

@Domain(valueType = int.class)
public class Identity<T> {

 private final int value;

 public Identity(int value) {
 this.value = value;
 }

 public int getValue() {
 return value;
 }
}

When you create the object of annotated class with a static factory method,
the method declaration must have same type parameters that are declared in the class declaration:

@Domain(valueType = int.class, factoryMethod = "of")
public class Identity<T> {

 private final int value;

 private Identity(int value) {
 this.value = value;
 }

 public int getValue() {
 return value;
 }

 public static <T> Identity<T> of(int value) {
 return new Identity<T>(value);
 }
}

External domain classes

This feature allows you to define arbitrary classes as domain classes,
even if the classes can be annotated with the @Domain annotation.

To define external domain classes, you have to do as follows:

	Create a class that implements org.seasar.doma.jdbc.domain.DomainConverter and
annotate @ExternalDomain to the class

	Create a class that is annotated with @DomainConverters

	Specify the class annotated with @ExternalDomain to the @DomainConverters’s value element

	Specify the full qualified name of the class annotated with @DomainConverters to
the option of Annotation processing

Suppose, for instance, there is the PhoneNumber class that you can change:

public class PhoneNumber {

 private final String value;

 public PhoneNumber(String value) {
 this.value = value;
 }

 public String getValue() {
 return value;
 }

 public String getAreaCode() {
 ...
 }
}

First, to define the PhoneNumber class as an external domain class, create following class:

@ExternalDomain
public class PhoneNumberConverter implements DomainConverter<PhoneNumber, String> {

 public String fromDomainToValue(PhoneNumber domain) {
 return domain.getValue();
 }

 public PhoneNumber fromValueToDomain(String value) {
 if (value == null) {
 return null;
 }
 return new PhoneNumber(value);
 }
}

Then create following class and specify the above class to the @DomainConverters’s value element:

@DomainConverters({ PhoneNumberConverter.class })
public class DomainConvertersProvider {
}

Finally, specify the full qualified name of the above class to the option of Annotation processing.
If you use Gradle, specify the option in the build script as follows:

compileJava {
 options {
 compilerArgs = ['-Adoma.domain.converters=example.DomainConvertersProvider']
 }
}

Using type parameters in external domain classes

All external domain class declarations have type parameters:

public class Identity<T> {

 private final int value;

 public Identity(int value) {
 this.value = value;
 }

 public int getValue() {
 return value;
 }
}

In the DomainConverter implementation class,
specify a wildcard ? as type arguments to the external domain class:

@ExternalDomain
public class IdentityConverter implements DomainConverter<Identity<?>, String> {

 public String fromDomainToValue(Identity<?> domain) {
 return domain.getValue();
 }

 @SuppressWarnings("rawtypes")
 public Identity<?> fromValueToDomain(String value) {
 if (value == null) {
 return null;
 }
 return new Identity(value);
 }
}

Example

The Domain classes showed above are used as follows:

@Entity
public class Employee {

 @Id
 Identity<Employee> employeeId;

 String employeeName;

 PhoneNumber phoneNumber;

 JobType jobType;

 @Version
 Integer versionNo();

 ...
}

@Dao
public interface EmployeeDao {

 @Select
 Employee selectById(Identity<Employee> employeeId);

 @Select
 Employee selectByPhoneNumber(PhoneNumber phoneNumber);

 @Select
 List<PhoneNumber> selectAllPhoneNumber();

 @Select
 Employee selectByJobType(JobType jobType);

 @Select
 List<JobType> selectAllJobTypes();
}

Embeddable classes

Contents

	Embeddable classes

	Embeddable definition

	Naming convention

	Field definition

	Column

	Transient

	Method definition

	Example

Embeddable classes group the properties for Entity classes.

Embeddable definition

The following code snippet shows how to define an embeddable:

@Embeddable
public class Address {

 final String city;

 final String street;

 @Column(name = "ZIP_CODE")
 final String zip;

 public Address(String city, String street, String zip) {
 this.city = city;
 this.street = street;
 this.zip = zip;
 }
}

The embeddable class is used as the entity field type:

@Entity
public class Employee {
 @Id
 Integer id;

 Address address;
}

The above entity definition is equivalent to following one:

@Entity
public class Employee {
 @Id
 Integer id;

 String city;

 String street;

 @Column(name = "ZIP_CODE")
 String zip;
}

Note

In Java 14 and later version, you can annotate records [https://openjdk.java.net/jeps/359] with @Embeddable:

@Embeddable
public record Address(
 String city,
 String street,
 @Column(name = "ZIP_CODE")String zip) {
}

Naming convention

A naming convention is inherited from the enclosing Entity classes.

Field definition

By default, the fields are persistent and correspond to the database columns or result set columns.

The field type must be one of the following:

	Basic classes

	Domain classes

	java.util.Optional, whose element is either Basic classes or Domain classes

	java.util.OptionalInt

	java.util.OptionalLong

	java.util.OptionalDouble

@Embeddable
public class Address {
 ...
 String street;
}

Column

You can specify the corresponding column name with the @Column annotation:

@Column(name = "ZIP_CODE")
final String zip;

Transient

If an embeddable has fields that you don’t want to persist, you can annotate them using @Transient:

Method definition

There are no limitations in the use of methods.

Example

Employee employee = new Employee(); // Entity
Address address = new Address("Tokyo", "Yaesu", "103-0028"); // Embeddable
employee.setAddress(address);

Entity classes

Contents

	Entity classes

	Entity definition

	Entity listeners

	Naming convention

	Immutable

	Table

	Field definition

	Column

	Id

	Version

	Tenant Id

	Transient

	OriginalStates

	Method definition

	Example

Entity classes correspond to database tables or query result sets.

Entity definition

The following code snippet shows how to define an entity:

@Entity
public class Employee {
 ...
}

An entity class can inherit other entity class.

The following code snippet shows how to inherit other entity class:

@Entity
public class SkilledEmployee extends Employee {
 ...
}

Note

In Java 14 and later version, you can annotate records [https://openjdk.java.net/jeps/359] with @Entity:

@Entity
public record Employee(...) {
}

In the case, the entity is recognize as Immutable
even though the immutable property of @Entity is false.

Entity listeners

Entity listeners work before/after Doma issues the database modification statements - INSERT, DELETE and UPDATE.

The following code snippet shows how to define an entity listener:

public class EmployeeEntityListener implements EntityListener<Employee> {
 ...
}

To use the entity listener, specify it to the listener property within the @Entity annotation:

@Entity(listener = EmployeeEntityListener.class)
public class Employee {
 ...
}

An entity subclass inherits parent`s entity listener.

Naming convention

Naming convention maps the names between:

	the database tables and the Java entity classes

	the database column and the Java entity fields

The following code snippet shows how to apply the naming convention to an entity:

@Entity(naming = NamingType.SNAKE_UPPER_CASE)
public class EmployeeInfo {
 ...
}

When the name property within the @Table or @Column annotation is explicitly specified,
the naming convention is ignored.

An entity subclass inherits parent’s naming convention.

Immutable

An entity class can be immutable.

The following code snippet shows how to define an immutable entity:

@Entity(immutable = true)
public class Employee {
 @Id
 final Integer id;
 final String name;
 @Version
 final Integer version;

 public Employee(Integer id, String name, Integer version) {
 this.id = id;
 this.name = name;
 this.version = version;
 }
 ...
}

The immutable property within the @Entity annotation must be true.
The persistent field must be final.

An entity subclass inherits parent’s immutable property.

Table

You can specify the corresponding table name with the @Table annotation:

@Entity
@Table(name = "EMP")
public class Employee {
 ...
}

Without the @Table annotation, the table name is resolved by Naming Convention.

Field definition

By default, the fields are persistent and correspond to the database columns or result set columns.

The field type must be one of the following:

	Basic classes

	Domain classes

	Embeddable classes

	java.util.Optional, whose element is either Basic classes or Domain classes

	java.util.OptionalInt

	java.util.OptionalLong

	java.util.OptionalDouble

The following code snippet shows how to define a filed:

@Entity
public class Employee {
 ...
 Integer employeeId;
}

Column

You can specify the corresponding column name with the @Column annotation:

@Column(name = "ENAME")
String employeeName;

To exclude fields from INSERT or UPDATE statements, specify false to the insertable or updatable
property within the @Column annotation:

@Column(insertable = false, updatable = false)
String employeeName;

Without the @Column annotation, the column name is resolved by Naming Convention.

Note

When the filed type is Embeddable classes, you cannot specify the @Column annotation to the field.

Id

The database primary keys are represented with the @Id annotation:

@Id
Integer id;

When there is a composite primary key, use the @Id annotation many times:

@Id
Integer id;

@Id
Integer id2;

Note

When the filed type is Embeddable classes, you cannot specify the @Id annotation to the field.

Id generation

You can instruct Doma to generate id values automatically using the @GeneratedValue annotation.

The field type must be one of the following:

	the subclass of java.lang.Number

	Domain classes, whose value type is the subclass of java.lang.Number

	java.util.Optional, whose element is either above types

	OptionalInt

	OptionalLong

	OptionalDouble

	the primitive types for number

Note

The generated values are assign to the field only when the field is either null or less than 0.
If you use one of the primitive types as filed type,
initialize the field with tha value that is less than 0, such as -1.

Id generation by IDENTITY

To generate values using the RDBMS IDENTITY function, specify the GenerationType.IDENTITY enum value
to strategy property within the @GeneratedValue:

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
Integer id;

In advance, define the database primary key as IDENTITY.

Warning

All RDBMS doesn’t support the IDENTITY function.

Id generation by SEQUENCE

To generate values using the RDBMS SEQUENCE, specify the GenerationType.SEQUENCE enum value
to strategy property within the @GeneratedValue annotation.
And use the @SequenceGenerator annotation:

@Id
@GeneratedValue(strategy = GenerationType.SEQUENCE)
@SequenceGenerator(sequence = "EMPLOYEE_SEQ")
Integer id;

In advance, define the SEQUENCE in the database.
The SEQUENCE definitions such as the name, the allocation size and the initial size must
correspond the properties within the @SequenceGenerator annotation.

Warning

All RDBMS doesn’t support the SEQUENCE.

Id generation by TABLE

To generate values using the RDBMS TABLE, specify the GenerationType.TABLE enum value
to strategy property within the @GeneratedValue annotation.
And use the @TableGenerator annotation:

@Id
@GeneratedValue(strategy = GenerationType.TABLE)
@TableGenerator(pkColumnValue = "EMPLOYEE_ID")
Integer id;

In advance, define the TABLE in the database.
The TABLE`s definition must correspond to the properties within the @TableGenerator annotation.
For example, the DDL should be following:

CREATE TABLE ID_GENERATOR(PK VARCHAR(20) NOT NULL PRIMARY KEY, VALUE INTEGER NOT NULL);

You can change the table name and the column names using the properties within the @TableGenerator annotation.

Version

The version fields for optimistic locking are represented with the @Version annotation.

The field type must be one of the following:

	the subclass of java.lang.Number

	Domain classes, whose value type is the subclass of java.lang.Number

	java.util.Optional, whose element is either above types

	OptionalInt

	OptionalLong

	OptionalDouble

	the primitive types for number

@Version
Integer version;

Note

When the filed type is Embeddable classes, you cannot specify the @Version annotation to the field.

Tenant Id

The tenant id fields are represented with the @TenantId annotation.
The column corresponding to the annotated field is included in the WHERE clause of UPDATE and DELETE statements.

@TenantId
String tenantId;

Note

When the filed type is Embeddable classes, you cannot specify the @TenantId annotation to the field.

Transient

If an entity has fields that you don’t want to persist, you can annotate them using @Transient:

@Transient
List<String> nameList;

OriginalStates

If you want to include only changed values in UPDATE statements,
you can define fields annotated with @OriginalStates.
The fields can hold the original values that were fetched from the database.

Doma uses the values to know which values are changed in the application and
includes the only changed values in UPDATE statements.

The following code snippet shows how to define original states:

@OriginalStates
Employee originalStates;

The field type must be the same as the entity type.

Method definition

There are no limitations in the use of methods.

Example

Instantiate the Employee entity class and use its instance:

Employee employee = new Employee();
employee.setEmployeeId(1);
employee.setEmployeeName("SMITH");
employee.setSalary(new BigDecimal(1000));

Dao interfaces

Contents

	Dao interfaces

	Dao definition

	Query definition

	Default method

	Example

Data Access Object (Dao) is interface for access to database.

Dao definition

Dao is defined as interface annotated @Dao.

Class implemented dao interface is generated in compile time by apt.

Query definition

Queries can be defined using annotation.

You use Query builders in default method if you want to build query freely in Java code.

Default method

You can write java code freely in default method.

You can get Config instance associated dao instance if you call Config.get with argument dao instance.

@Dao
public interface EmployeeDao {

 default int count() {
 Config config = Config.get(this);
 SelectBuilder builder = SelectBuilder.newInstance(config);
 builder.sql("select count(*) from employee");
 return builder.getScalarSingleResult(int.class);
 }
}

Example

Implementation class is generated by annotation processor on compile.
Implementation class is instantiated and used.
But if configuration class is managed by DI container then it should be controlled to instantiate implementation class by DI container.

EmployeeDao employeeDao = new EmployeeDaoImpl();
Employee employee = employeeDao.selectById(1);

In default, implementation class name is interface name suffixed with Impl.
Please refer Annotation processing to change package and suffix.

If you use default constructor then DataSource is determined by configuration in config element of @Dao.
But it can instantiate with DataSource specified explicitly.

DataSource dataSource = ...;
EmployeeDao employeeDao = new EmployeeDaoImpl(dataSource);
Employee employee = employeeDao.selectById(1);

And also, it can instantiate with Connection specified explicitly.

Connection connection = ...;
EmployeeDao employeeDao = new EmployeeDaoImpl(connection);
Employee employee = employeeDao.selectById(1);

Dao interface is no need to define as one to one with entity class.
One dao interface can handle more than one entity classes.

@Dao
public interface MyDao {

 @Select
 Employee selectEmployeeById(int id);

 @Select
 Department selectDepartmentByName(String name);

 @Update
 int updateAddress(Address address);
}

Queries

	Search
	Query condition
	Query that is used basic type or domain class

	Query that is used arbitrary type

	Mapping to IN clauses by using Iterable.

	Single record search

	Multiple record search

	Stream search
	Pass to the Function

	Return the return value

	Collect search

	Using search option search
	Paging

	Pessimistic concurrency control

	Aggregate

	Ensure of search result

	Ensure of mapping search result

	Query timeout

	Fetch size

	Max row count

	Naming rule of map’s key

	SQL log output format

	Insert
	Return value

	Insert by auto generated SQL
	Identifier

	Version numbers

	Insert by SQL file

	Unique constraint violation

	Query timeout

	SQL log output format

	Update
	Return value

	Update by auto generated SQL
	Version number and optimistic concurrency control in auto generated SQL

	Control updating target property

	Update by SQL file
	Case of using comment that generating update column list

	Case of not using comment that generating update column list

	Unique constraint violation

	Query timeout

	SQL log output format

	Delete
	Return value

	Delete by auto generated SQL
	Version number and optimistic concurrency control in auto generated SQL

	Delete by SQL file
	Version number and optimistic concurrency control in SQL File

	Query timeout

	SQL log output format

	Batch insert
	Return value

	Batch insert by auto generated SQL
	Identifier

	Version number

	Insert target property

	Batch insert by SQL file

	Unique constraint violation

	Query timeout

	Batch size

	SQL log output format

	Batch update
	Return value

	Batch update by auto generated SQL
	Version number and optimistic concurrency control in auto generated SQL

	Update target property

	Batch update by SQL file
	Case of using comment that generating update column list

	Case of not using comment that generating update column list

	Unique constraint violation

	Query timeout

	Batch size

	SQL log output format

	Batch delete
	Return value

	Batch delete by auto generated SQL
	Version number and optimistic concurrency control in auto generated SQL

	Batch delete by SQL file
	Version number and optimistic concurrency control in SQL file

	Query timeout

	Batch size

	SQL log output format

	Stored function
	Return type

	Function name

	Parameters
	IN parameter

	INOUT parameter

	OUT parameter

	Cursor or result set

	Stored procedure
	Return Type

	Procedure name

	Parameters
	IN parameter

	INOUT parameter

	OUT parameter

	Cursor or result set

	Factories
	Creating Array instances

	Creating Blob instances

	Creating Clob instances

	Creating NClob instances

	Creating SQLXML instances

	Script
	Script representation
	Scripts in files

	Scripts in annotation

	Delimiter

	Stopping on error

	Example

	SQL processor
	Return type

	Parameter

	Example

Search

Contents

	Search

	Query condition

	Query that is used basic type or domain class

	Query that is used arbitrary type

	Mapping to IN clauses by using Iterable.

	Single record search

	Multiple record search

	Stream search

	Pass to the Function

	Return the return value

	Collect search

	Using search option search

	Paging

	Pessimistic concurrency control

	Aggregate

	Ensure of search result

	Ensure of mapping search result

	Query timeout

	Fetch size

	Max row count

	Naming rule of map’s key

	SQL log output format

Annotate with @Select to Dao method for execute search.

@Dao
public interface EmployeeDao {
 @Select
 List<Employee> selectByDepartmentName(String departmentName);
 ...
}

SQL file is required in search.
There is no feature that auto generating search SQL.

Note

You need creating entity class depending on search result.
For example, result set including column in EMPLOYEE table is accepted Employee class if the Employee class that correspond EMPLOYEE table is declared.
But, you need different class from the Employee entity class(For example EmployeeDepartment class) for result set that is get by joining EMPLOYEE table and DEPARTMENT table.

Query condition

You use method parameters for query condition.
Available types is below.

	Basic classes

	Domain classes

	Arbitrary type

	Basic classes , Domain classes or arbitrary type are within java.util.Optional

	Basic classes or Domain classes are within java.util.Iterable

	java.util.OptionalInt

	java.util.OptionalLong

	java.util.OptionalDouble

Parameters count is no limit.
You can set null to parameter if parameter type is Basic classes or Domain classes.
Parameter must not be null if the type is other than that.

Query that is used basic type or domain class

You declare Basic classes or Domain classes to method or parameter.

@Select
List<Employee> selectByNameAndSalary(String name, Salary salary);

You map method parameter to SQL by using SQL comment in SQL file.
In SQL comment, method parameter name is referenced.

select * from employee where employee_name = /* name */'hoge' and salary > /* salary */100

Query that is used arbitrary type

You map to SQL by access field or call method there are using by dot . if using arbitrary parameter type in method parameter.

@Select
List<Employee> selectByExample(Employee employee);

select * from employee where employee_name = /* employee.name */'hoge' and salary > /* employee.getSalary() */100

You can specify multiple parameter.

@Select
List<Employee> selectByEmployeeAndDepartment(Employee employee, Department department);

Mapping to IN clauses by using Iterable.

You use subtype of java.lang.Iterable if execute searching by using IN clauses.

@Select
List<Employee> selectByNames(List<String> names);

select * from employee where employee_name in /* names */('aaa','bbb','ccc')

Single record search

You specify method return value type either of below for search single record.

	Basic classes

	Domain classes

	Entity classes

	java.util.Map<String, Object>

	Either Basic classes , Domain classes , Entity classes or java.util.Map<String, Object>
is within java.util.Optional

	java.util.OptionalInt

	java.util.OptionalLong

	java.util.OptionalDouble

@Select
Employee selectByNameAndSalary(String name, BigDecimal salary);

null is return if return type is not Optional and result count is 0.
If Ensure of search result is enabled, exception is thrown regardless return value type if search count is 0.

NonUniqueResultException is thrown if result exists 2 or more.

Multiple record search

You specify java.util.List to method return value type to for search multiple record.
You can use below property in List.

	Basic classes

	Domain classes

	Entity classes

	java.util.Map<String, Object>

	Either Basic classes or Domain classes is within java.util.Optional

	java.util.OptionalInt

	java.util.OptionalLong

	java.util.OptionalDouble

@Select
List<Employee> selectByNameAndSalary(String name, Salary salary);

Empty list instead of null is return if result count is 0.
But if Ensure of search result is enabled, exception is thrown if search count is 0.

Stream search

You can use stream search if handle all record at one try as java.util.stream.Stream rather than receiving as java.util.List.

There are two kind in stream search such as return the return value and pass Stream to java.util.Function.

Pass to the Function

You set SelectType.STREAM to strategy property within @Select annotation and
define subtype that is java.util.Function<Stream<TARGET>, RESULT> or java.util.Function<Stream<TARGET>, RESULT> to method parameter.

@Select(strategy = SelectType.STREAM)
BigDecimal selectByNameAndSalary(String name, BigDecimal salary, Function<Stream<Employee>, BigDecimal> mapper);

Caller receive stream and pass lambda expression that return result.

EmployeeDao dao = new EmployeeDaoImpl();
BigDecimal result = dao.selectByNameAndSalary(name, salary, stream -> {
 return ...;
});

Function<Stream<TARGET>, RESULT> corresponding type parameter TARGET must be either of below.

	Basic classes

	Domain classes

	Entity classes

	java.util.Map<String, Object>

	Either Basic classes or Domain classes is within java.util.Optional

	java.util.OptionalInt

	java.util.OptionalLong

	java.util.OptionalDouble

Type parameter RESULT must match to Dao method return value.

If Ensure of search result is enabled, exception is thrown if search count is 0.

Return the return value

You define java.util.stream.Stream to method return value.
You can use following type at property within Stream.

	Basic classes

	Domain classes

	Entity classes

	java.util.Map<String, Object>

	Either Basic classes or Domain classes within java.util.Optional

	java.util.OptionalInt

	java.util.OptionalLong

	java.util.OptionalDouble

@Select
Stream<Employee> selectByNameAndSalary(String name, BigDecimal salary);

Below is a caller.

EmployeeDao dao = new EmployeeDaoImpl();
try (Stream<Employee> stream = dao.selectByNameAndSalary(name, salary)) {
 ...
}

If Ensure of search result is enabled, exception is thrown if search count is 0.

Warning

Make sure to close the stream for prevent forgetting of release the resource.
If you do not close the stream, java.sql.ResultSet or java.sql.PreparedStatement ,
java.sql.Connection those are not closing.

Note

Consider adoption of pass to Function unless there is some particular reason,
because return the return value has the risk that is forgetting of release the resource.
Doma display warning message at Dao method for attention.
You specify @Suppress below for suppress warning.

@Select
@Suppress(messages = { Message.DOMA4274 })
Stream<Employee> selectByNameAndSalary(String name, BigDecimal salary);

Collect search

You can use collect search if handle result as java.util.Collector.

You set SelectType.COLLECT to strategy property within @Select annotation and
define subtype that is java.stream.Collector<TARGET, ACCUMULATION, RESULT> or java.stream.Collector<TARGET, ?, RESULT> to method parameter.

@Select(strategy = SelectType.COLLECT)
<RESULT> RESULT selectBySalary(BigDecimal salary, Collector<Employee, ?, RESULT> collector);

Caller pass Collector instance.

EmployeeDao dao = new EmployeeDaoImpl();
Map<Integer, List<Employee>> result =
 dao.selectBySalary(salary, Collectors.groupingBy(Employee::getDepartmentId));

Collector<TARGET, ACCUMULATION, RESULT> corresponding type parameter TARGET must be either of below.

	Basic classes

	Domain classes

	Entity classes

	java.util.Map<String, Object>

	Either Basic classes or Domain classes within java.util.Optional

	java.util.OptionalInt

	java.util.OptionalLong

	java.util.OptionalDouble

Type parameter RESULT must match Dao method return value.

If Ensure of search result is enabled, exception is thrown if search count is 0.

Note

Collect search is the shortcut that pass to Function within stream search.
You can do equivalent by using collect` method in Stream object that is getting from stream search.

Using search option search

You can automatically generate SQL for paging and pessimistic concurrency control from SQL file that is wrote SELECT clauses
by you use SelectOptions that is represent search option.

You use SelectOptions in combination with Single record search , Multiple record search , Stream search

You define SelectOptions as Dao method parameter.

@Dao
public interface EmployeeDao {
 @Select
 List<Employee> selectByDepartmentName(String departmentName, SelectOptions options);
 ...
}

You can get SelectOptions instance by static get method.

SelectOptions options = SelectOptions.get();

Paging

You specify start position by offset method and get count by limit method those are within SelectOptions,
and pass the SelectOptions instance to Dao method.

SelectOptions options = SelectOptions.get().offset(5).limit(10);
EmployeeDao dao = new EmployeeDaoImpl();
List<Employee> list = dao.selectByDepartmentName("ACCOUNT", options);

Paging is materialized by rewriting original SQL writing in file and executing.
Original SQL must be satisfied condition below.

	SQL is SELECT clauses

	In top level, set operation is not executed like UNION, EXCEPT, INTERSECT.(But using at subquery is able)

	Paging process is not included.

In addition, particular condition must be satisfied according to the database dialect.

If specify offset, there are ORDER BY clauses and all column that is specified at ORDER BY clauses is included in SELECT clauses.

	Dialect

	Condition

	Db2Dialect

	If specify offset, there are ORDER BY clauses and
all column that is specified at ORDER BY clauses is included in SELECT clauses.

	Mssql2008Dialect

	If specify offset, there are ORDER BY clauses and
all column that is specified at ORDER BY clauses is included in SELECT clauses.

	MssqlDialect

	If specify offset, there are ORDER BY clauses.

	StandardDialect

	There are ORDER BY clauses and
all column that is specified at ORDER BY clauses is included in SELECT clauses.

Pessimistic concurrency control

You indicate executing pessimistic concurrency control by forUpdate within SelectOptions,
and pass the SelectOptions instance to Dao method.

SelectOptions options = SelectOptions.get().forUpdate();
EmployeeDao dao = new EmployeeDaoImpl();
List<Employee> list = dao.selectByDepartmentName("ACCOUNT", options);

The method that name is started forUpdate for pessimistic concurrency control is prepared
such as forUpdateNowait method that do not wait for getting lock
and forUpdate method that can specify lock target table or column alias.

Pessimistic concurrency control is executed by rewriting original SQL writing in file.
Original SQL must be satisfied condition below.

	SQL is SELECT clauses

	In top level, set operation is not executed like UNION, EXCEPT, INTERSECT.(But using at subquery is able)

	Pessimistic concurrency control process is not included.

Part or all of pessimistic concurrency control method can not used according to the database dialect.

	Dialect

	Description

	Db2Dialect

	You can use forUpdate().

	H2Dialect

	You can use forUpdate().

	HsqldbDialect

	You can use forUpdate().

	Mssql2008Dialect

	You can use forUpdate() and forUpdateNowait().
However, FROM clauses in original SQL must consist single table.

	MysqlDialect

	You can use forUpdate()

	OracleDialect

	You can use forUpdate(), forUpdate(String… aliases),
forUpdateNowait(), forUpdateNowait(String… aliases),
forUpdateWait(int waitSeconds),
forUpdateWait(int waitSeconds, String… aliases).

	PostgresDialect

	You can use forUpdate() and forUpdate(String… aliases).

	StandardDialect

	You can not use all of pessimistic concurrency control method.

Aggregate

You can get aggregate count by calling count method within SelectOptions.
Usually, you use combination in paging option and use in case of getting all count if not narrowing by paging.

SelectOptions options = SelectOptions.get().offset(5).limit(10).count();
EmployeeDao dao = new EmployeeDaoImpl();
List<Employee> list = dao.selectByDepartmentName("ACCOUNT", options);
long count = options.getCount();

Aggregate count is get by using getCount method within SelectOptions after calling Dao method.
The getCount method is return -1 if you do not execute count method before calling method.

Ensure of search result

You specify true to ensureResult property within @Select annotation if you want to ensure of search result count is over 1.

@Select(ensureResult = true)
Employee selectById(Integer id);

NoResultException is thrown if search result count is 0.

Ensure of mapping search result

You specify true to ensureResultMapping property within @Select annotation,
if you want ensure that mapping result set column to all entity properties without exception.

@Select(ensureResultMapping = true)
Employee selectById(Integer id);

ResultMappingException is thrown if there are property that is not mapping to result set column.

Query timeout

You can specify seconds of query timeout to queryTimeout property within @Update annotation.

@Select(queryTimeout = 10)
List<Employee> selectAll();

Query timeout that is specified in Configuration is used if queryTimeout property is not set value.

Fetch size

You can specify fetch size to fetchSize property within @Select annotation.

@Select(fetchSize = 20)
List<Employee> selectAll();

Fetch size that is specified in Configuration is used if value is not set.

Max row count

You can specify max row count to maxRows property within @Select annotation.

@Select(maxRows = 100)
List<Employee> selectAll();

Max row count that is is specified in Configuration is used if value is not set.

Naming rule of map’s key

You can specify naming rule of map’s key to mapKeyNaming property within @Select annotation,
if you want mapping search result to java.util.Map<String, Object>.

@Select(mapKeyNaming = MapKeyNamingType.CAMEL_CASE)
List<Map<String, Object>> selectAll();

MapKeyNamingType.CAMEL_CASE present converting column name to camel case.
In addition to there are rule that converting upper case or lower case.

The final conversion result is decide by value specified here and implementation of MapKeyNaming is specified at Configuration.

SQL log output format

You can specify SQL log output format to sqlLog property within @Select annotation.

@Select(sqlLog = SqlLogType.RAW)
List<Employee> selectById(Integer id);

SqlLogType.RAW represent outputting log that is sql with a binding parameter.

Insert

Contents

	Insert

	Return value

	Insert by auto generated SQL

	Identifier

	Version numbers

	Insert by SQL file

	Unique constraint violation

	Query timeout

	SQL log output format

Annotate with @Insert to Dao method for execute insert.

@Dao
public interface EmployeeDao {
 @Insert
 int insert(Employee employee);

 @Insert
 Result<ImmutableEmployee> insert(ImmutableEmployee employee);
}

By default insert statement is auto generated.
You can mapping arbitrary SQL file by setting true to sqlFile element of @Insert.

Entity listener preInsert method is called when before executing insert if the entity listener is specified Entity classes parameter.
Also entity listener postInsert method is called when after executing insert.

Return value

Return value must be org.seasar.doma.jdbc.Result that make the entity class an element if parameter is immutable entity class.

Return value must be int that is represented updated count if the above conditions are not satisfied.

Insert by auto generated SQL

Parameter type must be entity class.
Specifiable parameter is only one.
Parameter must not be null.

@Insert
int insert(Employee employee);

@Insert
Result<ImmutableEmployee> insert(ImmutableEmployee employee);

Identifier

Identifier is auto generated and setting if Entity classes identifier is annotated with @GeneratedValue.

Reference Id generation about cautionary point.

Version numbers

If value that explicitly set is over 0 then use the value if Entity classes has property that is annotated with @Version.

If the value is not set or is less than 0 the value is set 1 automatically.

Control insertion target property

insertable

Property that is set false to insertable element of @Column is excluded from insertion if entity class has property that is annotated with @Column.

exclude

Property that is specified in exclude element of @Insert is excluded from insertion.
Even if insertable element of @Column is true the property is excluded from insertion if the property is specified by this element.

@Insert(exclude = {"name", "salary"})
int insert(Employee employee);

include

Property that is specified in include element of @Insert is included to insertion.
If same property are specified in both of include element and exclude element of @Insert the property is excluded from insertion.

Even if property is specified in this element the property is excluded from insertion if insertable element of @Column is false.

@Insert(include = {"name", "salary"})
int insert(Employee employee);

excludeNull

Property that value is null is excluded from insertion if excludeNull element of @Insert is true.
If this element is true, even if insertable element of @Column is true or property is specified in include element of @Insert
the property is excluded from insertion if value is null.

@Insert(excludeNull = true)
int insert(Employee employee);

Insert by SQL file

To execute insertion by SQL file,
you set true to sqlFile element of @Insert and prepare SQL file that correspond method.

You can use arbitrary type as parameter.
Specifiable parameters count is no limit.
You can set null to parameter if parameter type is basic type or domain class.
For other type than that, parameter must not be null.

@Insert(sqlFile = true)
int insert(Employee employee);

@Insert(sqlFile = true)
Result<ImmutableEmployee> insert(ImmutableEmployee employee);

For example, you describe SQL file like below to correspond above method.

insert into employee (id, name, salary, version)
values (/* employee.id */0,
 /* employee.name */'hoge',
 /* employee.salary */100,
 /* employee.version */0)

Identifier auto setting and version value auto setting is not done in insertion by SQL file.
Also, exclude element and include element and excludeNull element of @Insert are not referenced.

Unique constraint violation

UniqueConstraintException is thrown regardless with or without using sql file if unique constraint violation is occurred.

Query timeout

You can specify second of query timeout to queryTimeout element of @Insert.

@Insert(queryTimeout = 10)
int insert(Employee employee);

This specifying is applied regardless with or without using sql file.
Query timeout that is specified in Configuration is used if queryTimeout element is not set value.

SQL log output format

You can specify SQL log output format to sqlLog element of @Insert.

@Insert(sqlLog = SqlLogType.RAW)
int insert(Employee employee);

SqlLogType.RAW is represented that the log is outputted sql with a bind parameter.

Update

Contents

	Update

	Return value

	Update by auto generated SQL

	Version number and optimistic concurrency control in auto generated SQL

	Control updating target property

	Update by SQL file

	Case of using comment that generating update column list

	Case of not using comment that generating update column list

	Unique constraint violation

	Query timeout

	SQL log output format

Annotate with @Update to Dao method for execute update.

@Dao
public interface EmployeeDao {
 @Update
 int update(Employee employee);

 @Update
 Result<ImmutableEmployee> update(ImmutableEmployee employee);
}

By default UPDATE statement is auto generated.
You can mapping arbitrary SQL file by specifying true to sqlFile property within the @Update annotation.

The preUpdate method of entity listener is called when before executing update if the entity listener is specified at entity class parameter.
Also the postUpdate method of entity listener method is called when after executing update.

Return value

Return value must be org.seasar.doma.jdbc.Result that has entity class as an element if parameter is immutable entity class.

Return value must be int that is represented updated count if the above conditions are not satisfied.

Update by auto generated SQL

Parameter type must be entity class.
Specifiable parameter is only one.
Parameter must not be null.

@Update
int update(Employee employee);

@Update
Result<ImmutableEmployee> update(ImmutableEmployee employee);

Version number and optimistic concurrency control in auto generated SQL

Optimistic concurrency control is executed if you satisfied below conditions.

	Entity class within parameter has property that is annotated with @Version

	The ignoreVersion element within @Update annotation is false

If optimistic concurrency control is enable, version number is included with identifier in update condition and is updated increment by 1.
OptimisticLockException representing optimistic concurrency control failure is thrown, if at that time updated count is 0.
Also, OptimisticLockException is not thrown and version property within entity is increment by 1 if updated count is not 0.

ignoreVersion

If ignoreVersion property within @Update annotation is true,
version number is not include in update condition and be included in SET clauses within UPDATE statement.
Version number is updated by setting value at application.
OptimisticLockException is not thrown in this case, even if update count is 0.

@Update(ignoreVersion = true)
int update(Employee employee);

suppressOptimisticLockException

In case of suppressOptimisticLockException property within @Update is true,
if property that annotated with @Version is exists then version number is include in update condition and be increment by 1
but OptimisticLockException is not thrown even if update count is 0.
However, version property value within entity is increment by 1.

@Update(suppressOptimisticLockException = true)
int update(Employee employee);

Control updating target property

updatable

The updatable property within @Column annotation that is specified false is excluded from updating target if entity class has property that is annotated with @Column.

exclude

Property that is specified with exclude property within the @Update annotation is excluded from updating target.
Even if updatable property within @Column annotation is specified true the property is excluded from updating target if the property is specified by this element.

@Update(exclude = {"name", "salary"})
int update(Employee employee);

include

Only property that is specified with include property within @Update annotation is included to updating target.
If same property are specified with both of include property and exclude property within @Update the property is excluded from updating target.
Even if property is specified with this element the property is excluded from updating target if updatable property within @Column annotation is false.

@Update(include = {"name", "salary"})
int update(Employee employee);

excludeNull

Property that value is null is excluded from updating target if excludeNull property within @Update annotation is specified true.
If this element is true, even if updatable property within @Column annotation is specified true or property is specified with include property within @Update annotation
the property is excluded from insertion target if value is null.

@Update(excludeNull = true)
int update(Employee employee);

includeUnchanged

This element is enable only if property that annotated with @OriginalStates is exists within updating target entity class.

All property within entity is updating target if this element is true.
That is, the column corresponding to all property is included in SET clauses within UPDATE statement.

Only properties that have actually changed since the entity is updating target if this element is false.
That is, only the column corresponding to modified property is included in SET clauses within UPDATE statement.

@Update(includeUnchanged = true)
int update(Employee employee);

Update by SQL file

To execute updating by SQL file,
you set true to sqlFile property within @Update annotation and prepare SQL file that correspond method.

Note

In updating by SQL file, rule is different with or without use ref:populate.

Case of using comment that generating update column list

First parameter type must be entity class.
Specifiable parameters count is no limit.
You can set null to parameter if parameter type is basic type or domain class.
Parameter must not be null if the type is other than that.

@Update(sqlFile = true)
int update(Employee employee, BigDecimal salary);

@Update(sqlFile = true)
Result<ImmutableEmployee> update(ImmutableEmployee employee, , BigDecimal salary);

For example, you describe SQL file like below to correspond above method.

update employee set /*%populate*/ id = id where salary > /* salary */0

The rule about controlling updating target property is same as Update by auto generated SQL.

Case of not using comment that generating update column list

You can use arbitrary type as parameter.
Specifiable parameters count is no limit.
You can set null to parameter if parameter type is basic type or domain class.
Parameter must not be null if the type is other than that.

@Update(sqlFile = true)
int update(Employee employee);

@Update(sqlFile = true)
Result<ImmutableEmployee> update(ImmutableEmployee employee);

For example, you describe SQL file like below to correspond above method.

update employee set name = /* employee.name */'hoge', salary = /* employee.salary */100
where id = /* employee.id */0

exclude property and include property, excludeNull property, includeUnchanged property they are within @Update annotation are not referenced in updating by SQL file.

Version number and optimistic concurrency control in SQL file

Optimistic concurrency control is executed if you satisfied below conditions.

	Entity class is included in parameter.

	Entity class at first from the left within parameter has property that is annotated with @Version

	The ignoreVersion element within @Update annotation is false

However, describing to SQL file for Optimistic concurrency control SQL is application developer’s responsibility.
For example like below SQL, you must specify version number in WHERE clauses and increment version number by 1 in SET clauses.

update EMPLOYEE set DELETE_FLAG = 1, VERSION = /* employee.version */1 + 1
where ID = /* employee.id */1 and VERSION = /* employee.version */1

OptimisticLockException representing optimistic concurrency control failure is thrown, if this SQL updated count is 0.
OptimisticLockException is not thrown and version property within entity is increment by 1 if updated count is not 0.

ignoreVersion

If ignoreVersion property within @Update annotation is true,
OptimisticLockException is not thrown even if update count is 0.
Also, version property value within entity is not modified.

@Update(sqlFile = true, ignoreVersion = true)
int update(Employee employee);

suppressOptimisticLockException

If suppressOptimisticLockException property within @Update annotation is true,
OptimisticLockException is not thrown even if update count is 0.
However, version property value within entity is incremented by 1.

@Update(sqlFile = true, suppressOptimisticLockException = true)
int update(Employee employee);

Unique constraint violation

UniqueConstraintException is thrown regardless of with or without using sql file if unique constraint violation is occurred.

Query timeout

You can specify seconds of query timeout to queryTimeout property within @Update annotation.

@Update(queryTimeout = 10)
int update(Employee employee);

This specifying is applied regardless of with or without using sql file.
Query timeout that is specified in Configuration is used if queryTimeout property is not set value.

SQL log output format

You can specify SQL log output format to sqlLog property within @Update annotation.

@Update(sqlLog = SqlLogType.RAW)
int update(Employee employee);

SqlLogType.RAW represent outputting log that is sql with a binding parameter.

Delete

Contents

	Delete

	Return value

	Delete by auto generated SQL

	Version number and optimistic concurrency control in auto generated SQL

	Delete by SQL file

	Version number and optimistic concurrency control in SQL File

	Query timeout

	SQL log output format

Annotate with @Delete to Dao method for execute delete.

@Dao
public interface EmployeeDao {
 @Delete
 int delete(Employee employee);
}

By default DELETE statement is auto generated.
You can mapping arbitrary SQL file by specifying true to sqlFile property within the @Delete annotation.

The preDelete method of entity listener is called when before executing delete if the entity listener is specified at entity class parameter.
Also the postDelete method of entity listener is called when after executing delete.

Return value

Return value must be org.seasar.doma.jdbc.Result that make the entity class an element if parameter is immutable entity class.

Return value must be int that is represented updated count if the above conditions are not satisfied.

Delete by auto generated SQL

Parameter type must be entity class.
Specifiable parameter is only one.
Parameter must not be null.

@Delete
int delete(Employee employee);

@Delete
Result<ImmutableEmployee> delete(ImmutableEmployee employee);

Version number and optimistic concurrency control in auto generated SQL

Optimistic concurrency control is executed if you satisfied below conditions.

	Entity class within parameter has property that is annotated with @Version

	The ignoreVersion element within @Delete annotation is false

If optimistic concurrency control is enable, version number is included with identifier in delete condition.
OptimisticLockException representing optimistic concurrency control failure is thrown, if at that time delete count is 0.

ignoreVersion

If ignoreVersion property within @Delete annotation is true, version number is not include in delete condition.
OptimisticLockException is not thrown in this case, even if delete count is 0.

@Delete(ignoreVersion = true)
int delete(Employee employee);

suppressOptimisticLockException

If suppressOptimisticLockException property within @Delete is true, version number is included in delete condition.
But in this case OptimisticLockException is not thrown even if delete count is 0.

@Delete(suppressOptimisticLockException = true)
int delete(Employee employee);

Delete by SQL file

To execute deleting by SQL file, you set true to sqlFile property within @Delete annotation and prepare SQL file that correspond method.

You can use arbitrary type as parameter.
Specifiable parameters count is no limit.
You can set null to parameter if parameter type is basic type or domain class.
Parameter must not be null if the type is other than that.

Entity listener method is not called even if the entity listener is specified to entity.

@Delete(sqlFile = true)
int delete(Employee employee);

For example, you describe SQL file like below to correspond above method.

delete from employee where name = /* employee.name */'hoge'

Version number and optimistic concurrency control in SQL File

Optimistic concurrency control is executed if you satisfied below conditions.

	Entity class is included in parameter

	Entity class at first from the left within parameter has property that is annotated with @Version

	The ignoreVersion property within @Delete annotation is false

	The suppressOptimisticLockException property within @Delete annotation is false

However, describing to SQL file for Optimistic concurrency control SQL is application developer’s responsibility.
For example like below SQL, you must specify version number in WHERE clauses.

delete from EMPLOYEE where ID = /* employee.id */1 and VERSION = /* employee.version */1

OptimisticLockException representing optimistic concurrency control failure is thrown, if this SQL delete count is 0.
OptimisticLockException is not thrown if delete count is not 0.

ignoreVersion

If ignoreVersion property within @Delete annotation is true,
OptimisticLockException is not thrown even if delete count is 0.

@Delete(sqlFile = true, ignoreVersion = true)
int delete(Employee employee);

suppressOptimisticLockException

If suppressOptimisticLockException property within @Delete annotation is true,
OptimisticLockException is not thrown even if delete count is 0.

@Delete(sqlFile = true, suppressOptimisticLockException = true)
int delete(Employee employee);

Query timeout

You can specify seconds of query timeout to queryTimeout property within @Delete annotation.

@Delete(queryTimeout = 10)
int delete(Employee employee);

This specifying is applied regardless of with or without using sql file.
Query timeout that is specified in Configuration is used if queryTimeout property is not set value.

SQL log output format

You can specify SQL log output format to sqlLog property within @Delete annotation.

@Delete(sqlLog = SqlLogType.RAW)
int delete(Employee employee);

SqlLogType.RAW represent outputting log that is sql with a binding parameter.

Batch insert

Contents

	Batch insert

	Return value

	Batch insert by auto generated SQL

	Identifier

	Version number

	Insert target property

	Batch insert by SQL file

	Unique constraint violation

	Query timeout

	Batch size

	SQL log output format

Annotate with @BatchInsert to Dao method for execute batch insert.

@Dao
public interface EmployeeDao {
 @BatchInsert
 int[] insert(List<Employee> employees);

 @BatchInsert
 BatchResult<ImmutableEmployee> insert(List<ImmutableEmployee> employees);
}

By default INSERT statement is auto generated.
You can mapping arbitrary SQL file by specifying true to sqlFile property within the @BatchInsert annotation.

The preInsert method of entity listener is called each entity when before executing insert if the entity listener is specified at Entity classes parameter.
Also the postInsert method of entity listener method is called each entity when after executing insert.

Return value

Return value must be org.seasar.doma.jdbc.BatchResult that has entity class as an element if parameter Iterable subtype element is immutable entity class.

Return value must be int[] that is represented each inserting process’s updated count if the above conditions are not satisfied.

Batch insert by auto generated SQL

Parameter type must be java.lang.Iterable subtype that has Entity classes as an element.
Specifiable parameter is only one.
Parameter must not be null.
Return value array element count become equal Iterable element count.
Insert count is returned to array each element.

Identifier

If annotated with @GeneratedValue at Entity classes identifier, the identifier is auto generated and set.

You reference Id generation about cautionary point.

Version number

If value that explicitly set is over 0 then use the value if Entity classes has property that is annotated with @Version.
If the value is not set or is less than 0 the value is set 1 automatically.

Insert target property

insertable

The insertable property within @Column annotation that is specified false is excluded from insert target if Entity classes has property that is annotated with @Column.

exclude

Property that is specified with exclude property within the @BatchInsert annotation is excluded from inserting target.
Even if insertable property within @Column annotation is specified true the property is excluded from inserting target if the property is specified by this element.

@BatchInsert(exclude = {"name", "salary"})
int[] insert(List<Employee> employees);

include

Only property that is specified with include property within @BatchInsert annotation is included to inserting target.
If same property are specified with both of include property and exclude property within @BatchInsert the property is excluded from updating target.
Even if property is specified with this element the property is excluded from inserting target if insertable property within @Column annotation is false.

@BatchInsert(include = {"name", "salary"})
int[] insert(List<Employee> employees);

Batch insert by SQL file

To execute batch inserting by SQL file,
you set true to sqlFile property within @BatchInsert annotation and prepare SQL file that correspond method.

@BatchInsert(sqlFile = true)
int[] insert(List<Employee> employees);

@BatchInsert(sqlFile = true)
BatchResult<ImmutableEmployee> insert(List<ImmutableEmployee> employees);

Parameter type must be java.lang.Iterable subtype that has Entity classes as an element.
Specifiable parameter is only one.
Parameter must not be null.
Return value array element count become equal Iterable element count.
Insert count is returned to array each element.

If entity listener is specified at Entity classes then entity listener method is not called.

For example, you describe SQL like below to correspond above method.

insert into employee (id, name, salary, version)
values (/* employees.id */0, /* employees.name */'hoge', /* employees.salary */100, /* employees.version */0)

Parameter name indicate java.lang.Iterable subtype element in SQL file.

Identifier auto setting and version number auto setting are not executed in batch insert by SQL file.
Also, exclude property and include property within @BatchInsert are not referenced.

Unique constraint violation

UniqueConstraintException is thrown regardless of with or without using sql file if unique constraint violation is occurred.

Query timeout

You can specify seconds of query timeout to queryTimeout property within @BatchInsert annotation.

@BatchInsert(queryTimeout = 10)
int[] insert(List<Employee> employees);

This specifying is applied regardless of with or without using sql file.
Query timeout that is specified in config class is used if queryTimeout property is not set value.

Batch size

You can specify batch size to batchSize property within @BatchInsert annotation.

@BatchInsert(batchSize = 10)
int[] insert(List<Employee> employees);

This specify is applied Regardless of using or not using SQL file.
It you do not specify the value to batchSize property, batch size that is specified at Configuration class is applied.

SQL log output format

You can specify SQL log output format to sqlLog property within @BatchInsert annotation.

@BatchInsert(sqlLog = SqlLogType.RAW)
int insert(Employee employee);

SqlLogType.RAW represent outputting log that is sql with a binding parameter.

Batch update

Contents

	Batch update

	Return value

	Batch update by auto generated SQL

	Version number and optimistic concurrency control in auto generated SQL

	Update target property

	Batch update by SQL file

	Case of using comment that generating update column list

	Case of not using comment that generating update column list

	Unique constraint violation

	Query timeout

	Batch size

	SQL log output format

Annotate with @BatchUpdate to Dao method for execute batch update.

@Dao
public interface EmployeeDao {
 @BatchUpdate
 int[] update(List<Employee> employees);

 @BatchUpdate
 BatchResult<ImmutableEmployee> update(List<ImmutableEmployee> employees);
}

By default UPDATE statement is auto generated.
You can mapping arbitrary SQL file by specifying true to sqlFile property within the @BatchUpdate annotation.

The preUpdate method of entity listener is called each entity when before executing update if the entity listener is specified at Entity classes parameter.
Also the postUpdate method of entity listener method is called each entity when after executing update.

Return value

Return value must be org.seasar.doma.jdbc.BatchResult that has entity class as an element if parameter Iterable subtype element is immutable entity class.

Return value must be int[] that is represented each updating process’s updated count if the above conditions are not satisfied.

Batch update by auto generated SQL

Parameter type must be java.lang.Iterable subtype that has Entity classes as an element.
Specifiable parameter is only one.
Parameter must not be null.
Return value array element count become equal Iterable element count.
Update count is returned to array each element.

Version number and optimistic concurrency control in auto generated SQL

Optimistic concurrency control is executed if you satisfied below conditions.

	Entity classes within parameter java.lang.Iterable subtype has property that is annotated with @Version

	The ignoreVersion element within @BatchUpdate annotation is false

If optimistic concurrency control is enable, version number is included with identifier in update condition and is updated increment by 1.
BatchOptimisticLockException representing optimistic concurrency control failure is thrown, if at that time updated count is 0.
Also, BatchOptimisticLockException is not thrown and version property within entity is increment by 1 if updated count is 1.

ignoreVersion

If ignoreVersion property within @BatchUpdate annotation is true,
version number is not include in update condition and be included in SET clauses within UPDATE statement.
Version number is updated by setting value at application.
BatchOptimisticLockException is not thrown in this case, even if update count is 0.

@BatchUpdate(ignoreVersion = true)
int[] update(List<Employee> employees);

suppressOptimisticLockException

In case of suppressOptimisticLockException property within @BatchUpdate is true,
if property that annotated with @Version is exists then version number is include in update condition and be increment by 1
but BatchOptimisticLockException is not thrown even if update count is 0.
However, version property value within entity is increment by 1.

@BatchUpdate(suppressOptimisticLockException = true)
int[] update(List<Employee> employees);

Update target property

updatable

The updatable property within @Column annotation that is specified false is excluded from updating target if Entity classes has property that is annotated with @Column.

exclude

Property that is specified with exclude property within the @BatchUpdate annotation is excluded from updating target.
Even if updatable property within @Column annotation is specified true the property is excluded from updating target if the property is specified by this element.

@BatchUpdate(exclude = {"name", "salary"})
int[] update(List<Employee> employees);

include

Only property that is specified with include property within @BatchUpdate annotation is included to updating target.
If same property are specified with both of include property and exclude property within @BatchUpdate the property is excluded from updating target.
Even if property is specified with this element the property is excluded from updating target if updatable property within @Column annotation is false.

@BatchUpdate(include = {"name", "salary"})
int[] update(List<Employee> employees);

Batch update by SQL file

To execute batch updating by SQL file,
you set true to sqlFile property within @BatchUpdate annotation and prepare SQL file that correspond method.

Note

In batch updating by SQL file, rule is different according to using or not using Population directive.

Case of using comment that generating update column list

@BatchUpdate(sqlFile = true)
int[] update(List<Employee> employees);

@BatchUpdate
BatchResult<ImmutableEmployee> update(List<ImmutableEmployee> employees);

Parameter type must be java.lang.Iterable subtype that has Entity classes as an element.
Specifiable parameter is only one.
Parameter must not be null.
Return value array element count become equal Iterable element count.
Update count is returned to array each element.

For example, you describe SQL like below to correspond above method.

update employee set /*%populate*/ id = id where name = /* employees.name */'hoge'

Parameter name indicate Iterable subtype element in SQL file.

The rule that is about update target property equals Batch update by auto generated SQL.

Case of not using comment that generating update column list

@BatchUpdate(sqlFile = true)
int[] update(List<Employee> employees);

@BatchUpdate
BatchResult<ImmutableEmployee> update(List<ImmutableEmployee> employees);

Parameter type must be java.lang.Iterable subtype that has arbitrary type as an element.
Specifiable parameter is only one.
Parameter must not be null.
Return value array element count become equal Iterable element count.
Update count is returned to array each element.

For example, you describe SQL like below to correspond above method.

update employee set name = /* employees.name */'hoge', salary = /* employees.salary */100
where id = /* employees.id */0

Parameter name indicate Iterable subtype element in SQL file.

Version number auto updating is not executed in batch update by SQL file.
Also, exclude property and include property within @BatchUpdate annotation are not referenced.

Version number and optimistic concurrency control in SQL file

Optimistic concurrency control is executed if you satisfied below conditions.

	java.lang.Iterable subtype element in parameter is Entity classes
and has property that is annotated @Version existing at Entity classes.

	ignoreVersion property within @BatchUpdate annotation is false.

However, describing to SQL file for Optimistic concurrency control SQL is application developer’s responsibility.
For example like below SQL, you must specify version number in WHERE clauses and increment version number by 1 in SET clauses.

update EMPLOYEE set DELETE_FLAG = 1, VERSION = /* employees.version */1 + 1
where ID = /* employees.id */1 and VERSION = /* employees.version */1

BatchOptimisticLockException representing optimistic concurrency control failure is thrown, if this SQL updated count is 0.
BatchOptimisticLockException is not thrown and version property within entity is increment by 1 if updated count is not 0.

If optimistic concurrency control is enable, version number is included with identifier in update condition and is updated increment by 1.
BatchOptimisticLockException representing optimistic concurrency control failure is thrown, if at that time updated count is 0.
On the other hand, if update count is 1, BatchOptimisticLockException is not thrown and entity version property is increment by 1.

ignoreVersion

If ignoreVersion property within @BatchUpdate annotation is true,
BatchOptimisticLockException is not thrown, even if update count is 0 or multiple.
Also, entity version property is not modified.

@BatchUpdate(sqlFile = true, ignoreVersion = true)
int[] update(List<Employee> employees);

suppressOptimisticLockException

In case of suppressOptimisticLockException property within @BatchUpdate is true,
BatchOptimisticLockException is not thrown even if update count is 0.
However, entity version property value is incremented by 1.

@BatchUpdate(sqlFile = true, suppressOptimisticLockException = true)
int[] update(List<Employee> employees);

Unique constraint violation

UniqueConstraintException is thrown regardless of with or without using sql file if unique constraint violation is occurred.

Query timeout

You can specify seconds of query timeout to queryTimeout property within @BatchUpdate annotation.

@BatchUpdate(queryTimeout = 10)
int[] update(List<Employee> employees);

This specifying is applied regardless of with or without using sql file.
Query timeout that is specified in config class is used if queryTimeout property is not set value.

Batch size

You can specify batch size to batchSize property within @BatchUpdate annotation.

@BatchUpdate(batchSize = 10)
int[] update(List<Employee> employees);

This specify is applied Regardless of using or not using SQL file.
It you do not specify the value to batchSize property, batch size that is specified at Configuration class is applied.

SQL log output format

You can specify SQL log output format to sqlLog property within @BatchUpdate annotation.

@BatchUpdate(sqlLog = SqlLogType.RAW)
int[] update(List<Employee> employees);

SqlLogType.RAW represent outputting log that is sql with a binding parameter.

Batch delete

Contents

	Batch delete

	Return value

	Batch delete by auto generated SQL

	Version number and optimistic concurrency control in auto generated SQL

	Batch delete by SQL file

	Version number and optimistic concurrency control in SQL file

	Query timeout

	Batch size

	SQL log output format

Annotate with @BatchDelete to Dao method for execute batch delete.

@Dao
public interface EmployeeDao {
 @BatchDelete
 int[] delete(List<Employee> employees);
 ...
}

By default DELETE statement is auto generated.
You can mapping arbitrary SQL file by specifying true to sqlFile property within the @BatchDelete annotation.

The preDelete method of entity listener is called each entity when before executing delete if the entity listener is specified at Entity classes parameter.
Also the postDelete method of entity listener method is called each entity when after executing delete.

Return value

Return value must be org.seasar.doma.jdbc.BatchResult that has entity class as an element if parameter Iterable subtype element is immutable entity class.

Return value must be int[] that is represented each deleting process’s updated count if the above conditions are not satisfied.

Batch delete by auto generated SQL

Parameter type must be java.lang.Iterable subtype that has Entity classes as an element.
Specifiable parameter is only one.
Parameter must not be null.
Return value array element count become equal Iterable element count.
Delete count is returned to array each element.

Version number and optimistic concurrency control in auto generated SQL

Optimistic concurrency control is executed if you satisfied below conditions.

	Entity classes within parameter java.lang.Iterable subtype has property that is annotated with @Version

	The ignoreVersion element within @BatchDelete annotation is false

If optimistic concurrency control is enable, version number is included with identifier in delete condition.
BatchOptimisticLockException representing optimistic concurrency control failure is thrown, if at that time deleted count is 0.

ignoreVersion

If ignoreVersion property within @BatchDelete annotation is true, version number is not include in delete condition.
BatchOptimisticLockException is not thrown, even if delete count is 0.

@BatchDelete(ignoreVersion = true)
int[] delete(List<Employee> employees);

suppressOptimisticLockException

In case of suppressOptimisticLockException property within @BatchDelete is true,
version number is include in delete condition but BatchOptimisticLockException is not thrown even if delete count is 0.

@BatchDelete(suppressOptimisticLockException = true)
int[] delete(List<Employee> employees);

Batch delete by SQL file

To execute batch deleting by SQL file,
you set true to sqlFile property within @BatchDelete annotation and prepare SQL file that correspond method.

@BatchDelete(sqlFile = true)
int[] delete(List<Employee> employees);

Parameter type must be java.lang.Iterable subtype that has arbitrary type as an element.
Specifiable parameter is only one.
Parameter must not be null.
Return value array element count become equal Iterable element count.
Delete count is returned to array each element.

For example, you describe SQL like below to correspond above method.

delete from employee where name = /* employees.name */'hoge'

Parameter name indicate java.lang.Iterable subtype element in SQL file.

Version number and optimistic concurrency control in SQL file

Optimistic concurrency control is executed if you satisfied below conditions.

	The parameter java.lang.Iterable subtype has Entity classes element, the Entity classes element is annotated with @Version

	The ignoreVersion element within @BatchDelete annotation is false

However, describing to SQL file for Optimistic concurrency control SQL is application developer’s responsibility.
For example like below SQL, you must specify version number in WHERE clauses.

delete from EMPLOYEE where ID = /* employees.id */1 and VERSION = /* employees.version */1

BatchOptimisticLockException representing optimistic concurrency control failure is thrown, if deleted count is 0 or multiple in this SQL.

ignoreVersion

If ignoreVersion property within @BatchDelete annotation is true,
BatchOptimisticLockException is not thrown even if deleted count is 0 or multiple.

@BatchDelete(sqlFile = true, ignoreVersion = true)
int[] delete(List<Employee> employees);

suppressOptimisticLockException

If suppressOptimisticLockException property within @BatchDelete is true,
BatchOptimisticLockException is not thrown even if deleted count is 0 or multiple.

@BatchDelete(sqlFile = true, suppressOptimisticLockException = true)
int[] delete(List<Employee> employees);

Query timeout

You can specify seconds of query timeout to queryTimeout property within @BatchDelete annotation.

@BatchDelete(queryTimeout = 10)
int[] delete(List<Employee> employees);

This specifying is applied regardless of with or without using sql file.
Query timeout that is specified in config class is used if queryTimeout property is not set value.

Batch size

You can specify batch size to batchSize property within @BatchDelete annotation.

@BatchDelete(batchSize = 10)
int[] delete(List<Employee> employees);

This specify is applied regardless of using or not using SQL file.
It you do not specify the value to batchSize property, batch size that is specified at Configuration class is applied.

SQL log output format

You can specify SQL log output format to sqlLog property within @BatchDelete annotation.

@BatchDelete(sqlLog = SqlLogType.RAW)
int[] delete(List<Employee> employees);

SqlLogType.RAW represent outputting log that is sql with a binding parameter.

Stored function

Contents

	Stored function

	Return type

	Function name

	Parameters

	IN parameter

	INOUT parameter

	OUT parameter

	Cursor or result set

To call stored functions, you must annotate DAO methods with the @Function annotation:

@Dao
public interface EmployeeDao {
 @Function
 Integer execute(@In Integer id, @InOut Reference<BigDecimal> salary);
 ...
}

Return type

If the stored function returns nothing, the return type must be void.

If the stored function returns a single result, the return type must be one of the following:

	Basic classes

	Domain classes

	Entity classes

	java.util.Map<String, Object>

	java.util.Optional, whose element type is one of Basic classes, Domain classes,
Entity classes, and java.util.Map<String, Object>

	java.util.OptionalInt

	java.util.OptionalLong

	java.util.OptionalDouble

If the stored function returns a result list, the return type must be java.util.List
and its element type must be one of the following:

	Basic classes

	Domain classes

	Entity classes

	java.util.Map<String, Object>

	java.util.Optional whose element type is either Basic classes or Domain classes

	java.util.OptionalInt

	java.util.OptionalLong

	java.util.OptionalDouble

Function name

The annotated method name is recognized as the function name by default.
To override it, you can specify the value to the @Function’s name element:

@Function(name = "calculateSalary")
void execute(@In Integer id, @InOut Reference<BigDecimal> salary);

Parameters

The order of stored function’s parameters must correspond with the order of DAO method parameters.

All parameters must be annotated with one of following annotations:

	@In

	@InOut

	@Out

	@ResultSet

IN parameter

To indicate IN parameters, annotate corresponding DAO method parameters with the @In annotation.
The type of the DAO method parameter must be one of the following:

	Basic classes

	Domain classes

	java.util.Optional whose element type is either Basic classes or Domain classes

	java.util.OptionalInt

	java.util.OptionalLong

	java.util.OptionalDouble

Suppose you have the following definition:

@Function
void execute(@In Integer id);

You can invoke the method as follows:

EmployeeDao dao = new EmployeeDaoImpl();
dao.execute(1);

INOUT parameter

To indicate INOUT parameters, annotate corresponding DAO method parameters with
the @InOut annotation.
The type of the DAO method parameter must be org.seasar.doma.jdbc.Reference
and its type parameter must be one of the following:

	Basic classes

	Domain classes

	java.util.Optional whose element type is either Basic classes or Domain classes

	java.util.OptionalInt

	java.util.OptionalLong

	java.util.OptionalDouble

Suppose you have the following definition:

@Function
void execute(@InOut Reference<BigDecimal> salary);

You can invoke the method as follows:

EmployeeDao dao = new EmployeeDaoImpl();
BigDecimal in = new BigDecimal(100);
Reference<BigDecimal> ref = new Reference<BigDecimal>(in);
dao.execute(ref);
BigDecimal out = ref.get();

OUT parameter

To indicate OUT parameters, annotate corresponding DAO method parameters with
the @Out annotation.
The type of the DAO method parameter must be org.seasar.doma.jdbc.Reference
and its type parameter must be one of the following:

	Basic classes

	Domain classes

	java.util.Optional whose element type is either Basic classes or Domain classes

	java.util.OptionalInt

	java.util.OptionalLong

	java.util.OptionalDouble

Suppose you have the following definition:

@Function
Integer execute(@Out Reference<BigDecimal> salary);

You can invoke the method as follows:

EmployeeDao dao = new EmployeeDaoImpl();
Reference<BigDecimal> ref = new Reference<BigDecimal>();
Integer result = dao.execute(ref);
BigDecimal out = ref.get();

Cursor or result set

To indicate cursors or result sets,
annotate corresponding DAO method parameters with the @ResultSet annotation.

The DAO method parameter type must be java.util.List
and its element type must be one of the following:

	Basic classes

	Domain classes

	Entity classes

	java.util.Map<String, Object>

	java.util.Optional whose element type is either Basic classes or Domain classes

	java.util.OptionalInt

	java.util.OptionalLong

	java.util.OptionalDouble

Suppose you have the following definition:

@Function
void execute(@ResultSet List<Employee> employee);

You can invoke the method as follows:

EmployeeDao dao = new EmployeeDaoImpl();
List<Employee> employees = new ArrayList<Employee>();
dao.execute(employees);
for (Employee e : employees) {
 ...
}

Stored procedure

Contents

	Stored procedure

	Return Type

	Procedure name

	Parameters

	IN parameter

	INOUT parameter

	OUT parameter

	Cursor or result set

To call stored procedures, you must annotate DAO methods with the @Procedure annotation:

@Dao
public interface EmployeeDao {
 @Procedure
 void execute(@In Integer id, @InOut Reference<BigDecimal> salary);
 ...
}

Return Type

The return type must be void.

Procedure name

The annotated method name is recognized as the procedure name by default.
To override it, you can specify the value to the @Procedure’s name element:

@Procedure(name = "calculateSalary")
void execute(@In Integer id, @InOut Reference<BigDecimal> salary);

Parameters

The order of stored procedure’s parameters must correspond with the order of DAO method parameters.

All parameters must be annotated with one of following annotations:

	@In

	@InOut

	@Out

	@ResultSet

IN parameter

To indicate IN parameters, annotate corresponding DAO method parameters with the @In annotation.
The type of the DAO method parameter must be one of the following:

	Basic classes

	Domain classes

	java.util.Optional whose element type is either Basic classes or Domain classes

	java.util.OptionalInt

	java.util.OptionalLong

	java.util.OptionalDouble

Suppose you have the following definition:

@Procedure
void execute(@In Integer id);

You can invoke the method as follows:

EmployeeDao dao = new EmployeeDaoImpl();
dao.execute(1);

INOUT parameter

To indicate INOUT parameters, annotate corresponding DAO method parameters with
the @InOut annotation.
The type of the DAO method parameter must be org.seasar.doma.jdbc.Reference
and its type parameter must be one of the following:

	Basic classes

	Domain classes

	java.util.Optional whose element type is either Basic classes or Domain classes

	java.util.OptionalInt

	java.util.OptionalLong

	java.util.OptionalDouble

Suppose you have the following definition:

@Procedure
void execute(@InOut Reference<BigDecimal> salary);

You can invoke the method as follows:

EmployeeDao dao = new EmployeeDaoImpl();
BigDecimal in = new BigDecimal(100);
Reference<BigDecimal> ref = new Reference<BigDecimal>(in);
dao.execute(ref);
BigDecimal out = ref.get();

OUT parameter

To indicate OUT parameters, annotate corresponding DAO method parameters with
the @Out annotation.
The type of the DAO method parameter must be org.seasar.doma.jdbc.Reference
and its type parameter must be one of the following:

	Basic classes

	Domain classes

	java.util.Optional whose element type is either Basic classes or Domain classes

	java.util.OptionalInt

	java.util.OptionalLong

	java.util.OptionalDouble

Suppose you have the following definition:

@Procedure
void execute(@Out Reference<BigDecimal> salary);

You can invoke the method as follows:

EmployeeDao dao = new EmployeeDaoImpl();
Reference<BigDecimal> ref = new Reference<BigDecimal>();
dao.execute(ref);
BigDecimal out = ref.get();

Cursor or result set

To indicate cursors or result sets,
annotate corresponding DAO method parameters with the @ResultSet annotation.

The DAO method parameter type must be java.util.List
and its element type must be one of the following:

	Basic classes

	Domain classes

	Entity classes

	java.util.Map<String, Object>

	java.util.Optional whose element type is either Basic classes or Domain classes

	java.util.OptionalInt

	java.util.OptionalLong

	java.util.OptionalDouble

Suppose you have the following definition:

@Procedure
void execute(@ResultSet List<Employee> employees);

You can invoke the method as follows:

EmployeeDao dao = new EmployeeDaoImpl();
List<Employee> employees = new ArrayList<Employee>();
dao.execute(employees);
for (Employee e : employees) {
 ...
}

Factories

Contents

	Factories

	Creating Array instances

	Creating Blob instances

	Creating Clob instances

	Creating NClob instances

	Creating SQLXML instances

To get instances from the factory methods of java.sql.Connection,
annotate DAO methods with one of following annotations;

	@ArrayFactory

	@BlobFactory

	@ClobFactory

	@NClobFactory

	@SQLXMLFactory

Creating Array instances

A return type must be java.sql.Array and the number of parameters must be one.
The parameter type must be an array type and the parameter must not be null.

Specify a database type name to the @ArrayFactory’s typeName element:

@ArrayFactory(typeName = "integer")
Array createIntegerArray(Integer[] elements);

Creating Blob instances

A return type must be java.sql.Blob and the number of parameters must be zero:

@BlobFactory
Blob createBlob();

Creating Clob instances

A return type must be java.sql.Clob and the number of parameters must be zero:

@ClobFactory
Clob createClob();

Creating NClob instances

A return type must be java.sql.NClob and the number of parameters must be zero:

@NClobFactory
NClob createNClob();

Creating SQLXML instances

A return type must be java.sql.SQLXML and the number of parameters must be zero:

@SQLXMLFactory
SQLXML createSQLXML();

Script

Contents

	Script

	Script representation

	Scripts in files

	Scripts in annotation

	Delimiter

	Stopping on error

	Example

To run a series of static SQL statements,
annotate DAO methods with @Script:

@Dao
public interface EmployeeDao {
 @Script
 void createTable();
 ...
}

The return type of the method must be void and the number of parameters must be zero.

Script representation

Scripts in files

Encoding

The script files must be saved as UTF-8 encoded.

Location

The script files must be located in directories below a “META-INF” directory
which is included in CLASSPATH.

Format of file path

The script file path must follow the following format:

META-INF/path-format-of-dao-interface/dao-method.script

For example, when the DAO interface name is aaa.bbb.EmployeeDao
and the DAO method name is createTable, the script file path is as follows:

META-INF/aaa/bbb/EmployeeDao/createTable.script

Dependency on a specific RDBMS

You can specify a dependency on a specific RDBMS by file name.
To do this, put the hyphen “-” and RDBMS name before the extension “.sql”.
For example, the file path specific to PostgreSQL is as follows:

META-INF/aaa/bbb/EmployeeDao/createTable-postgres.script

The script files specific to RDBMSs are given priority.
For example, in the environment where PostgreSQL is used,
“META-INF/aaa/bbb/EmployeeDao/createTable-postgres.script”
is chosen instead of “META-INF/aaa/bbb/EmployeeDao/createTable.script”.

See also Dependency on a specific RDBMS.

Scripts in annotation

You can specify scripts to DAO methods with the @Sql annotation:

@Dao
public interface EmployeeDao {
 @Sql("create table employee (id integer, name varchar(200))")
 @Script
 void createTable();
 ...
}

See also SQL templates in annotations.

Delimiter

There are two kinds of delimiters in scripts:

	statement delimiter

	block delimiter

The statement delimiter is always a semicolon ;.
The block delimiter is determined by a Dialect instance.
The RDBMS block delimiters are as follows:

	RDBMS

	Dialect

	block delimiter

	DB2

	Db2Dialect

	@

	H2 Database Engine 1.2.126

	H212126Dialect

	

	H2 Database

	H2Dialect

	

	HSQLDB

	HsqldbDialect

	

	Microsoft SQL Server 2008

	Mssql2008Dialect

	GO

	Microsoft SQL Server

	MssqlDialect

	GO

	MySQL

	MySqlDialect

	/

	Oracle Database

	OracleDialect

	/

	PostgreSQL

	PostgresDialect

	$$

	SQLite

	SqliteDialect

	

You can also specify the block delimiter to @Script’s blockDelimiter element:

@Script(blockDelimiter = "GO")
void createProcedure();

The corresponding script file is as follows:

SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO

CREATE PROCEDURE [dbo].[MY_PROCEDURE]
AS
BEGIN
 SET NOCOUNT ON;
END
GO

Stopping on error

Script running will stop when any statement execution fails.
To continue the script running, specify false to the haltOnError element:

@Script(haltOnError = false)
void createTable();

Example

Following script is valid for Oracle Database:

/*
 * table creation statement
 */
create table EMPLOYEE (
 ID numeric(5) primary key, -- identifier is not generated automatically
 NAME varchar2(20) -- first name only
);

/*
 * insert statement
 */
insert into EMPLOYEE (ID, NAME) values (1, 'SMITH');

/*
 * procedure creation block
 */
create or replace procedure proc
(cur out sys_refcursor,
 employeeid in numeric
) as
begin
 open cur for select * from employee where id > employeeid order by id;
end proc_resultset;
/

/*
 * procedure creation block
 */
create or replace procedure proc2
(cur out sys_refcursor,
 employeeid in numeric
) as
begin
 open cur for select * from employee where id > employeeid order by id;
end proc_resultset;
/

You can use both a single line comment -- and a multi-line comment /* ... */.
Each statement must end with a semicolon ;.
Be careful that a new line doesn’t mean the end of a statement.

In this example, the slash / is a block delimiter.
The block delimiter must appear at the beginning of a line and be followed by a new line.

SQL processor

Contents

	SQL processor

	Return type

	Parameter

	Example

SQL processors can handle the SQL statements generated from corresponding SQL templates.
To mark a DAO method as an SQL processor, annotate the method with @SqlProcessor:

@Dao
public interface EmployeeDao {
 @SqlProcessor
 <R> R process(Integer id, BiFunction<Config, PreparedSql, R> handler);
 ...
}

Warning

Being aware of SQL injection vulnerabilities is essential.
If it’s possible, consider alternative ways other than SQL processors.

Return type

The return type must be the same type as the third type parameter of BiFunction:

@SqlProcessor
String process(Integer id, BiFunction<Config, PreparedSql, String> handler);

If the return type is void, the third type parameter of BiFunction must be Void:

@SqlProcessor
void process(Integer id, BiFunction<Config, PreparedSql, Void> handler);

Parameter

Include a parameter whose type is BiFunction.
The BiFunction parameter accepts a configuration and an SQL statement then processes them.
Parameters other than the BiFunction parameter are used in the SQL template.

Example

Suppose you want to change the SQL statement generated from an SQL template and execute it:

EmployeeDao dao = ...
dao.process(1, (config, preparedSql) -> {
 String sql = preparedSql.getRawSql();
 String anotherSql = createAnotherSql(sql);
 DataSource dataSource = config.getDataSource()
 Connection connection = dataSource.getConnection();
 PreparedStatement statement = connection.prepareStatement(anotherSql);
 return statement.execute();
});

select * from employee where id = /*^ id */0

Query builders

Contents

	Query builders

	Search

	Single record search

	Multiple records search

	Stream search

	Insert

	Update

	Delete

The package org.seasar.doma.jdbc.builder provides SQL builders.

When it is difficult to build a SQL statement with Queries,
consider to use the SQL builders in Default method.

Search

SelectBuilder builder = SelectBuilder.newInstance(config);
builder.sql("select");
builder.sql("id").sql(",");
builder.sql("name").sql(",");
builder.sql("salary");
builder.sql("from Emp");
builder.sql("where");
builder.sql("job_type = ").literal(String.class, "fulltime");
builder.sql("and");
builder.sql("name like ").param(String.class, "S%");
builder.sql("and");
builder.sql("age in (").params(Integer.class, Arrays.asList(20, 30, 40)).sql(")");
List<Emp> employees = builder.getEntityResultList(Emp.class);

You can get result of the SQL execution in various ways.

Single record search

	getScalarSingleResult

	getOptionalScalarSingleResult

	getEntitySingleResult

	getOptionalEntitySingleResult

	getMapSingleResult

	getOptionalMapSingleResult

Multiple records search

	getScalarResultList

	getOptionalScalarResultList

	getEntityResultList

	getMapResultList

Stream search

	streamAsScalar

	streamAsOptionalScalar

	streamAsEntity

	streamAsMap

Insert

InsertBuilder builder = InsertBuilder.newInstance(config);
builder.sql("insert into Emp");
builder.sql("(name, salary)");
builder.sql("values (");
builder.param(String.class, "SMITH").sql(", ");
builder.param(BigDecimal.class, new BigDecimal(1000)).sql(")");
builder.execute();

Update

UpdateBuilder builder = UpdateBuilder.newInstance(config);
builder.sql("update Emp");
builder.sql("set");
builder.sql("name = ").param(String.class, "SMIHT").sql(",");
builder.sql("salary = ").param(BigDecimal.class, new BigDecimal("1000"));
builder.sql("where");
builder.sql("id = ").param(int.class, 10);
builder.execute();

Delete

DeleteBuilder builder = DeleteBuilder.newInstance(config);
builder.sql("delete from Emp");
builder.sql("where");
builder.sql("name = ").param(String.class, "SMITH");
builder.sql("and");
builder.sql("salary = ").param(BigDecimal.class, new BigDecimal(1000));
builder.execute();

Criteria API

Contents

	Criteria API

	Introduction

	Entityql DSL

	NativeSql DSL

	The difference between two DSLs

	Select statement

	Select settings (Entityql, NativeSql)

	Fetching (Entityql, NativeSql)

	Streaming (NativeSql)

	Select expression

	Entity selection (Entityql, NativeSql)

	Multiple entity selection (NativeSql)

	Column projection (NativeSql)

	Column projection and mapping (Entityql, NativeSql)

	Where expression (Entityql, NativeSql)

	Dynamic where expression (Entityql, NativeSql)

	Join expression

	innerJoin (Entityql, NativeSql)

	leftJoin (Entityql, NativeSql)

	association (Entityql)

	association for immutable entities (Entityql)

	Dynamic join expression (Entityql, NativeSql)

	Dynamic association (Entityql)

	Aggregate Functions (NativeSql)

	Group by expression (NativeSql)

	Having expression (NativeSql)

	Dynamic having expression (NativeSql)

	Order by expression (Entityql, NativeSql)

	Dynamic order by expression (NativeSql)

	Distinct expression (Entityql, NativeSql)

	Limit and Offset expression (Entityql, NativeSql)

	Dynamic Limit and Offset expression (Entityql, NativeSql)

	For Update expression (Entityql, NativeSql)

	Union expression (NativeSql)

	Delete statement

	Delete settings (Entityql, NativeSql)

	Delete statement (Entityql)

	Delete statement (NativeSql)

	Insert statement

	Insert settings (Entityql, NativeSql)

	Insert statement (Entityql)

	Insert statement (NativeSql)

	Update statement

	Update settings (Entityql, NativeSql)

	Update statement (Entityql)

	Update statement (NativeSql)

	Property expressions (Entityql, NativeSql)

	Arithmetic expressions

	String functions

	Literal expression

	Case expression

	Subquery select expression

	Tips

	Execution in Dao (Entityql, NativeSql)

	Overwriting the table name (Entityql, NativeSql)

	Debugging (Entityql, NativeSql)

	Sample projects

Introduction

Note

In Kotlin environment, use Kotlin specific DSLs instead of the following DSLs.
See Kotlin specific Criteria API.

There are two kinds of DSLs in the Criteria API:

	The Entityql DSL

	The NativeSql DSL

Both requires predefined Entity classes and metamodel classes.

We use the following Entity classes to show you some examples:

@Entity(metamodel = @Metamodel)
public class Employee {

 @Id private Integer employeeId;
 private Integer employeeNo;
 private String employeeName;
 private Integer managerId;
 private LocalDate hiredate;
 private Salary salary;
 private Integer departmentId;
 private Integer addressId;
 @Version private Integer version;
 @OriginalStates private Employee states;
 @Transient private Department department;
 @Transient private Employee manager;
 @Transient private Address address;

 // getters and setters
}

@Entity(metamodel = @Metamodel)
public class Department {

 @Id private Integer departmentId;
 private Integer departmentNo;
 private String departmentName;
 private String location;
 @Version private Integer version;
 @OriginalStates private Department originalStates;
 @Transient private List<Employee> employeeList = new ArrayList<>();

 // getters and setters
}

@Entity(immutable = true, metamodel = @Metamodel)
@Table(name = "EMPLOYEE")
public class Emp {

 @Id private final Integer employeeId;
 private final Integer employeeNo;
 private final String employeeName;
 private final Integer managerId;
 private final LocalDate hiredate;
 private final Salary salary;
 private final Integer departmentId;
 private final Integer addressId;
 @Version private final Integer version;
 @Transient private final Dept department;
 @Transient private final Emp manager;

 // constructor and getters
}

@Entity(immutable = true, metamodel = @Metamodel)
@Table(name = "DEPARTMENT")
public class Dept {

 @Id private final Integer departmentId;
 private final Integer departmentNo;
 private final String departmentName;
 private final String location;
 @Version private final Integer version;

 // constructor and getters
}

Note that the above classes are annotated with @Entity(metamodel = @Metamodel).
The metamodel = @Metamodel indicates that the annotated entity
has a corresponding metamodel class generated by Doma’s annotation processor .

In our examples, the metamodel classes are Employee_, Department_, Emp_ and Dept_.
These metamodels allow you to make your query typesafe.

You can customize the name of the metamodels by the Metamodel annotation elements.

To customize all metamodels in bulk, you can use the annotation processor options.
See Annotation processing and check the following options:

	doma.metamodel.enabled

	doma.metamodel.prefix

	doma.metamodel.suffix

Entityql DSL

The Entityql DSL can query and associate entities.
The entry point is the org.seasar.doma.jdbc.criteria.Entityql class.
This class has the following methods:

	from

	insert

	delete

	update

You can instantiate the Entityql class as follows:

Entityql entityql = new Entityql(config);

For example, to query Employee and Department entities and associate them, write as follows:

Employee_ e = new Employee_();
Department_ d = new Department_();

List<Employee> list =
 entityql
 .from(e)
 .innerJoin(d, on -> on.eq(e.departmentId, d.departmentId))
 .where(c -> c.eq(d.departmentName, "SALES"))
 .associate(
 e,
 d,
 (employee, department) -> {
 employee.setDepartment(department);
 department.getEmployeeList().add(employee);
 })
 .fetch();

The above query issues the following SQL statement:

select t0_.EMPLOYEE_ID, t0_.EMPLOYEE_NO, t0_.EMPLOYEE_NAME, t0_.MANAGER_ID,
t0_.HIREDATE, t0_.SALARY, t0_.DEPARTMENT_ID, t0_.ADDRESS_ID, t0_.VERSION,
t1_.DEPARTMENT_ID, t1_.DEPARTMENT_NO, t1_.DEPARTMENT_NAME, t1_.LOCATION, t1_.VERSION
from EMPLOYEE t0_ inner join DEPARTMENT t1_ on (t0_.DEPARTMENT_ID = t1_.DEPARTMENT_ID)
where t1_.DEPARTMENT_NAME = ?

NativeSql DSL

The NativeSql DSL can issue more complex SQL statements rather than the Entityql DSL.
But note that the NativeSql DSL doesn’t support to associate entities.

The entry point is the org.seasar.doma.jdbc.criteria.NativeSql class.
This class has the following methods:

	from

	delete

	insert

	update

You can instantiate the NativeSql class as follows:

NativeSql nativeSql = new NativeSql(config);

For example, to query two columns with GROUP BY and HAVING clauses, write as follows:

Employee_ e = new Employee_();
Department_ d = new Department_();

List<Tuple2<Long, String>> list =
 nativeSql
 .from(e)
 .innerJoin(d, on -> on.eq(e.departmentId, d.departmentId))
 .groupBy(d.departmentName)
 .having(c -> c.gt(count(), 3L))
 .orderBy(c -> c.asc(count()))
 .select(count(), d.departmentName)
 .fetch();

The above query issues the following SQL statement:

select count(*), t1_.DEPARTMENT_NAME from EMPLOYEE t0_
inner join DEPARTMENT t1_ on (t0_.DEPARTMENT_ID = t1_.DEPARTMENT_ID)
group by t1_.DEPARTMENT_NAME
having count(*) > ?
order by count(*) asc

The difference between two DSLs

The biggest difference between two DSLs is that the Entityql DSL removes duplicated data
from the fetched results, but the NativeSQL DSL doesn’t.

See the following example:

Department_ d = new Department_();
Employee_ e = new Employee_();

// (1) Use Entityql DSL
List<Department> list1 =
 entityql.from(d).innerJoin(e, on -> on.eq(d.departmentId, e.departmentId)).fetch();

// (2) Use NativeSql DSL
List<Department> list2 =
 nativeSql.from(d).innerJoin(e, on -> on.eq(d.departmentId, e.departmentId)).fetch();

System.out.println(list1.size()); // 3
System.out.println(list2.size()); // 14

Both (1) and (2) issue the same SQL statement as follows:

select t0_.DEPARTMENT_ID, t0_.DEPARTMENT_NO, t0_.DEPARTMENT_NAME, t0_.LOCATION,t0_.VERSION
from DEPARTMENT t0_
inner join EMPLOYEE t1_ on (t0_.DEPARTMENT_ID = t1_.DEPARTMENT_ID)

The ResultSet contains 14 rows, but the Entityql DSL returns only 3 rows
because it removes duplicate Department entities.
The Entityql DSL uses the id properties to know the uniqueness of the entities.

On the other hand, the NativeSql DSL returns the data as it retrieves from the database.
It puts results into entity objects, but it handles them as the plain DTOs.

Select statement

Select settings (Entityql, NativeSql)

We support the following settings:

	allowEmptyWhere

	comment

	fetchSize

	maxRows

	queryTimeout

	sqlLogType

They are all optional.
You can apply them as follows:

Employee_ e = new Employee_();

List<Employee> list = entityql.from(e, settings -> {
 settings.setAllowEmptyWhere(false);
 settings.setComment("all employees");
 settings.setFetchSize(100);
 settings.setMaxRows(100);
 settings.setSqlLogType(SqlLogType.RAW);
 settings.setQueryTimeout(1000);
}).fetch();

Fetching (Entityql, NativeSql)

Both Entityql DSL and NativeSql DSL support the following methods to fetch data from a database:

	fetch

	fetchOne

	fetchOptional

	stream

Employee_ e = new Employee_();

// The fetch method returns results as a list.
List<Employee> list =
 entityql.from(e).fetch();

// The fetchOne method returns a single result. The result may be null.
Employee employee =
 entityql.from(e).where(c -> c.eq(e.employeeId, 1)).fetchOne();

// The fetchOptional method returns a single result as an optional object.
Optional<Employee> optional =
 entityql.from(e).where(c -> c.eq(e.employeeId, 1)).fetchOptional();

// The stream method returns results as a stream.
// The following code is equivalent to "entityql.from(e).fetch().stream()"
Stream<Employee> stream =
 entityql.from(e).stream();

Streaming (NativeSql)

The NativeSql DSL supports the following methods:

	mapStream

	collect

Employee_ e = new Employee_();

// The mapStream method handles a stream.
Map<Integer, List<Employee>> map =
 nativeSql
 .from(e)
 .mapStream(stream -> stream.collect(groupingBy(Employee::getDepartmentId)));

// The collect method is a shortcut of the mapStream method.
// The following code does the same thing with the above.
Map<Integer, List<Employee>> map2 =
 nativeSql.from(e).collect(groupingBy(Employee::getDepartmentId));

These methods handle the stream that wraps a JDBC ResultSet.
So they are useful to process a large ResultSet effectively.

Select expression

Entity selection (Entityql, NativeSql)

By default, the result entity type is the same as the one specified at the from method.
See the following code:

Employee_ e = new Employee_();
Department_ d = new Department_();

List<Employee> list =
 entityql
 .from(e)
 .innerJoin(d, on -> on.eq(e.departmentId, d.departmentId))
 .fetch();

The above query issues the following SQL statement:

select t0_.EMPLOYEE_ID, t0_.EMPLOYEE_NO, t0_.EMPLOYEE_NAME, t0_.MANAGER_ID,
t0_.HIREDATE, t0_.SALARY, t0_.DEPARTMENT_ID, t0_.ADDRESS_ID, t0_.VERSION
from EMPLOYEE t0_
inner join DEPARTMENT t1_ on (t0_.DEPARTMENT_ID = t1_.DEPARTMENT_ID)

To choose a joined entity type as the result entity type,
call the select method as follows:

Employee_ e = new Employee_();
Department_ d = new Department_();

List<Department> list =
 entityql
 .from(e)
 .innerJoin(d, on -> on.eq(e.departmentId, d.departmentId))
 .select(d)
 .fetch();

The above query issues the following SQL statement:

select t1_.DEPARTMENT_ID, t1_.DEPARTMENT_NO, t1_.DEPARTMENT_NAME, t1_.LOCATION, t1_.VERSION
from EMPLOYEE t0_
inner join DEPARTMENT t1_ on (t0_.DEPARTMENT_ID = t1_.DEPARTMENT_ID)

Multiple entity selection (NativeSql)

You can specify multiple entity types and fetch them as a tuple as follows:

Employee_ e = new Employee_();
Department_ d = new Department_();

List<Tuple2<Department, Employee>> list =
 nativeSql
 .from(d)
 .leftJoin(e, on -> on.eq(d.departmentId, e.departmentId))
 .where(c -> c.eq(d.departmentId, 4))
 .select(d, e)
 .fetch();

The above query issues the following SQL statement:

select t0_.DEPARTMENT_ID, t0_.DEPARTMENT_NO, t0_.DEPARTMENT_NAME, t0_.LOCATION,
t0_.VERSION, t1_.EMPLOYEE_ID, t1_.EMPLOYEE_NO, t1_.EMPLOYEE_NAME, t1_.MANAGER_ID,
t1_.HIREDATE, t1_.SALARY, t1_.DEPARTMENT_ID, t1_.ADDRESS_ID, t1_.VERSION
from DEPARTMENT t0_ left outer join EMPLOYEE t1_ on (t0_.DEPARTMENT_ID = t1_.DEPARTMENT_ID)
where t0_.DEPARTMENT_ID = ?

The entity included in the tuple may be null when the all properties of the entity are null.

Column projection (NativeSql)

To project columns, use the select method:

To project one column, pass one property to the select method as follows:

Employee_ e = new Employee_();

List<String> list = nativeSql.from(e).select(e.employeeName).fetch();

The above query issues the following SQL statement:

select t0_.EMPLOYEE_NAME from EMPLOYEE t0_

To project two or more columns, pass two or more properties to the select method as follows:

Employee_ e = new Employee_();

List<Tuple2<String, Integer>> list =
 nativeSql.from(e).select(e.employeeName, e.employeeNo).fetch();

The above query issues the following SQL statement:

select t0_.EMPLOYEE_NAME, t0_.EMPLOYEE_NO from EMPLOYEE t0_

Up to 9 numbers, the column results are held by Tuple2 to Tuple9.
For more than 9 numbers, the results are held by Row.

Column projection and mapping (Entityql, NativeSql)

To project columns and map them to an entity, use the selectTo method as follows:

Employee_ e = new Employee_();

List<Employee> list = entityql.from(e).selectTo(e, e.employeeName).fetch();

The above query issues the following SQL statement:

select t0_.EMPLOYEE_ID, t0_.EMPLOYEE_NAME from EMPLOYEE t0_

Note that the select clause of the above SQL statement contains the primary key “EMPLOYEE_ID”.
The selectTo method always includes the id properties of the entity, even if you don’t.

Where expression (Entityql, NativeSql)

We support the following operators and predicates:

	eq - (=)

	ne - (<>)

	ge - (>=)

	gt - (>)

	le - (<=)

	lt - (<)

	isNull - (is null)

	isNotNull - (is not null)

	like

	notLike - (not like)

	between

	in

	notIn - (not in)

	exists

	notExists - (not exists)

Note

If the right hand operand is null, the WHERE or the HAVING clause doesn’t include the operator.
See WhereDeclaration [https://www.javadoc.io/doc/org.seasar.doma/doma-core/latest/org/seasar/doma/jdbc/criteria/declaration/WhereDeclaration.html] and HavingDeclaration [https://www.javadoc.io/doc/org.seasar.doma/doma-core/latest/org/seasar/doma/jdbc/criteria/declaration/HavingDeclaration.html] javadoc for more details.

We also support the following utility operators:

	eqOrIsNull - (“=” or “is null”)

	neOrIsNotNull - (“<>” or “is not null”)

We also support the following logical operators:

	and

	or

	not

Employee_ e = new Employee_();

List<Employee> list =
 entityql
 .from(e)
 .where(
 c -> {
 c.eq(e.departmentId, 2);
 c.isNotNull(e.managerId);
 c.or(
 () -> {
 c.gt(e.salary, new Salary("1000"));
 c.lt(e.salary, new Salary("2000"));
 });
 })
 .fetch();

The above query issues the following SQL statement:

select t0_.EMPLOYEE_ID, t0_.EMPLOYEE_NO, t0_.EMPLOYEE_NAME, t0_.MANAGER_ID, t0_.HIREDATE,
t0_.SALARY, t0_.DEPARTMENT_ID, t0_.ADDRESS_ID, t0_.VERSION
from EMPLOYEE t0_
where t0_.DEPARTMENT_ID = ? and t0_.MANAGER_ID is not null or (t0_.SALARY > ? and t0_.SALARY < ?)

You can write a subquery as follows:

Employee_ e = new Employee_();
Employee_ e2 = new Employee_();

List<Employee> list =
 entityql
 .from(e)
 .where(c -> c.in(e.employeeId, c.from(e2).select(e2.managerId)))
 .orderBy(c -> c.asc(e.employeeId))
 .fetch();

The above query issues the following SQL statement:

select t0_.EMPLOYEE_ID, t0_.EMPLOYEE_NO, t0_.EMPLOYEE_NAME, t0_.MANAGER_ID, t0_.HIREDATE,
t0_.SALARY, t0_.DEPARTMENT_ID, t0_.ADDRESS_ID, t0_.VERSION
from EMPLOYEE t0_
where t0_.EMPLOYEE_ID in (select t1_.MANAGER_ID from EMPLOYEE t1_)
order by t0_.EMPLOYEE_ID asc

Dynamic where expression (Entityql, NativeSql)

A where expression uses only evaluated operators to build a WHERE clause.

When every operators are not evaluated in a where expression,
the built statement doesn’t have any WHERE clause.

As well as, when every operators are not evaluated in a logical operator expression,
the built statement doesn’t have the logical operator expression.

For example, suppose that a where expression contains a conditional expression as follows:

Employee_ e = new Employee_();

List<Employee> list =
 entityql
 .from(e)
 .where(
 c -> {
 c.eq(e.departmentId, 1);
 if (enableNameCondition) {
 c.like(e.employeeName, name);
 }
 })
 .fetch();

In the case that the enableNameCondition variable is false, the like expression is ignored.
The above query issues the following SQL statement:

select t0_.EMPLOYEE_ID, t0_.EMPLOYEE_NO, t0_.EMPLOYEE_NAME, t0_.MANAGER_ID, t0_.HIREDATE,
t0_.SALARY, t0_.DEPARTMENT_ID, t0_.ADDRESS_ID, t0_.VERSION
from EMPLOYEE t0_ where t0_.DEPARTMENT_ID = ?

Join expression

We support the following expressions:

	innerJoin - (inner join)

	leftJoin - (left outer join)

innerJoin (Entityql, NativeSql)

Employee_ e = new Employee_();
Department_ d = new Department_();

List<Employee> list =
 entityql.from(e).innerJoin(d, on -> on.eq(e.departmentId, d.departmentId)).fetch();

The above query issues the following SQL statement:

select t0_.EMPLOYEE_ID, t0_.EMPLOYEE_NO, t0_.EMPLOYEE_NAME, t0_.MANAGER_ID, t0_.HIREDATE,
t0_.SALARY, t0_.DEPARTMENT_ID, t0_.ADDRESS_ID, t0_.VERSION
from EMPLOYEE t0_
inner join DEPARTMENT t1_ on (t0_.DEPARTMENT_ID = t1_.DEPARTMENT_ID)

leftJoin (Entityql, NativeSql)

Employee_ e = new Employee_();
Department_ d = new Department_();

List<Employee> list =
 entityql.from(e).leftJoin(d, on -> on.eq(e.departmentId, d.departmentId)).fetch();

The above query issues the following SQL statement:

select t0_.EMPLOYEE_ID, t0_.EMPLOYEE_NO, t0_.EMPLOYEE_NAME, t0_.MANAGER_ID, t0_.HIREDATE,
t0_.SALARY, t0_.DEPARTMENT_ID, t0_.ADDRESS_ID, t0_.VERSION
from EMPLOYEE t0_
left outer join DEPARTMENT t1_ on (t0_.DEPARTMENT_ID = t1_.DEPARTMENT_ID)

association (Entityql)

You can associate entities with the associate operation in the Entityql DSL.
You have to use the associate operation with join expression.

Employee_ e = new Employee_();
Department_ d = new Department_();

List<Employee> list =
 entityql
 .from(e)
 .innerJoin(d, on -> on.eq(e.departmentId, d.departmentId))
 .where(c -> c.eq(d.departmentName, "SALES"))
 .associate(
 e,
 d,
 (employee, department) -> {
 employee.setDepartment(department);
 department.getEmployeeList().add(employee);
 })
 .fetch();

The above query issues the following SQL statement:

select t0_.EMPLOYEE_ID, t0_.EMPLOYEE_NO, t0_.EMPLOYEE_NAME, t0_.MANAGER_ID,
t0_.HIREDATE, t0_.SALARY, t0_.DEPARTMENT_ID, t0_.ADDRESS_ID, t0_.VERSION,
t1_.DEPARTMENT_ID, t1_.DEPARTMENT_NO, t1_.DEPARTMENT_NAME, t1_.LOCATION, t1_.VERSION
from EMPLOYEE t0_ inner join DEPARTMENT t1_ on (t0_.DEPARTMENT_ID = t1_.DEPARTMENT_ID)
where t1_.DEPARTMENT_NAME = ?

You can associate many entities:

Employee_ e = new Employee_();
Department_ d = new Department_();
Address_ a = new Address_();

List<Employee> list =
 entityql
 .from(e)
 .innerJoin(d, on -> on.eq(e.departmentId, d.departmentId))
 .innerJoin(a, on -> on.eq(e.addressId, a.addressId))
 .where(c -> c.eq(d.departmentName, "SALES"))
 .associate(
 e,
 d,
 (employee, department) -> {
 employee.setDepartment(department);
 department.getEmployeeList().add(employee);
 })
 .associate(e, a, Employee::setAddress)
 .fetch();

association for immutable entities (Entityql)

You can associate immutable entities with the associateWith operation in the Entityql DSL.
You have to use the associateWith operation with join expression.

Emp_ e = new Emp_();
Emp_ m = new Emp_();
Dept_ d = new Dept_();

List<Emp> list =
 entityql
 .from(e)
 .innerJoin(d, on -> on.eq(e.departmentId, d.departmentId))
 .leftJoin(m, on -> on.eq(e.managerId, m.employeeId))
 .where(c -> c.eq(d.departmentName, "SALES"))
 .associateWith(e, d, Emp::withDept)
 .associateWith(e, m, Emp::withManager)
 .fetch();

The above query issues the following SQL statement:

select t0_.EMPLOYEE_ID, t0_.EMPLOYEE_NO, t0_.EMPLOYEE_NAME, t0_.MANAGER_ID, t0_.HIREDATE,
t0_.SALARY, t0_.DEPARTMENT_ID, t0_.ADDRESS_ID, t0_.VERSION,
t1_.DEPARTMENT_ID, t1_.DEPARTMENT_NO, t1_.DEPARTMENT_NAME, t1_.LOCATION, t1_.VERSION,
t2_.EMPLOYEE_ID, t2_.EMPLOYEE_NO, t2_.EMPLOYEE_NAME, t2_.MANAGER_ID, t2_.HIREDATE,
t2_.SALARY, t2_.DEPARTMENT_ID, t2_.ADDRESS_ID, t2_.VERSION
from EMPLOYEE t0_
inner join DEPARTMENT t1_ on (t0_.DEPARTMENT_ID = t1_.DEPARTMENT_ID)
left outer join EMPLOYEE t2_ on (t0_.MANAGER_ID = t2_.EMPLOYEE_ID)
where t1_.DEPARTMENT_NAME = ?

Dynamic join expression (Entityql, NativeSql)

A join expression uses only evaluated operators to build a JOIN clause.

When every operators are not evaluated in a join expression,
the built statement doesn’t have any JOIN clause.

For example, suppose that a join expression contains a conditional expression as follows:

Employee_ e = new Employee_();
Employee_ e2 = new Employee_();

List<Employee> list =
 entityql
 .from(e)
 .innerJoin(
 e2,
 on -> {
 if (join) {
 on.eq(e.managerId, e2.employeeId);
 }
 })
 .fetch();

In the case that the join variable is false, the on expression is ignored.
The above query issues the following SQL statement:

select t0_.EMPLOYEE_ID, t0_.EMPLOYEE_NO, t0_.EMPLOYEE_NAME, t0_.MANAGER_ID, t0_.HIREDATE,
t0_.SALARY, t0_.DEPARTMENT_ID, t0_.ADDRESS_ID, t0_.VERSION
from EMPLOYEE t0_

Dynamic association (Entityql)

When you use the above dynamic join expression, the association must be optional.
To do it, pass the result of AssociationOption.optional() to the associate method:

Employee_ e = new Employee_();
Department_ d = new Department_();

List<Employee> list =
 entityql
 .from(e)
 .innerJoin(
 d,
 on -> {
 if (join) {
 on.eq(e.departmentId, d.departmentId);
 }
 })
 .associate(
 e,
 d,
 (employee, department) -> {
 employee.setDepartment(department);
 department.getEmployeeList().add(employee);
 },
 AssociationOption.optional())
 .fetch();

Aggregate Functions (NativeSql)

We support the following aggregate functions:

	avg(property)

	avgAsDouble(property)

	count()

	count(property)

	countDistinct(property)

	max(property)

	min(property)

	sum(property)

These are defined in the org.seasar.doma.jdbc.criteria.expression.Expressions class.
Use them with static import.

For example, you can pass the sum function to the select method:

Employee_ e = new Employee_();

Salary salary = nativeSql.from(e).select(sum(e.salary)).fetchOne();

The above query issues the following SQL statement:

select sum(t0_.SALARY) from EMPLOYEE t0_

Group by expression (NativeSql)

Employee_ e = new Employee_();

List<Tuple2<Integer, Long>> list =
 nativeSql.from(e).groupBy(e.departmentId).select(e.departmentId, count()).fetch();

The above query issues the following SQL statement:

select t0_.DEPARTMENT_ID, count(*) from EMPLOYEE t0_ group by t0_.DEPARTMENT_ID

When you don’t specify a group by expression,
the expression is inferred from the select expression automatically.
So the following code issue the same SQL statement above:

Employee_ e = new Employee_();

List<Tuple2<Integer, Long>> list =
 nativeSql.from(e).select(e.departmentId, count()).fetch();

Having expression (NativeSql)

We support the following operators:

	eq - (=)

	ne - (<>)

	ge - (>=)

	gt - (>)

	le - (<=)

	lt - (<)

We also support the following logical operators:

	and

	or

	not

Employee_ e = new Employee_();
Department_ d = new Department_();

List<Tuple2<Long, String>> list =
 nativeSql
 .from(e)
 .innerJoin(d, on -> on.eq(e.departmentId, d.departmentId))
 .having(c -> c.gt(count(), 3L))
 .orderBy(c -> c.asc(count()))
 .select(count(), d.departmentName)
 .fetch();

The above query issues the following SQL statement:

select count(*), t1_.DEPARTMENT_NAME
from EMPLOYEE t0_
inner join DEPARTMENT t1_ on (t0_.DEPARTMENT_ID = t1_.DEPARTMENT_ID)
group by t1_.DEPARTMENT_NAME having count(*) > ? or (min(t0_.SALARY) <= ?)
order by count(*) asc

Dynamic having expression (NativeSql)

A having expression uses only evaluated operators to build a HAVING clause.

When every operators are not evaluated in a having expression,
the built statement doesn’t have any HAVING clause.

As well as, when every operators are not evaluated in a logical operator expression,
the built statement doesn’t have the logical operator expression.

Order by expression (Entityql, NativeSql)

We support the following order operations:

	asc

	desc

Employee_ e = new Employee_();

List<Employee> list =
 entityql
 .from(e)
 .orderBy(
 c -> {
 c.asc(e.departmentId);
 c.desc(e.salary);
 })
 .fetch();

The above query issues the following SQL statement:

select t0_.EMPLOYEE_ID, t0_.EMPLOYEE_NO, t0_.EMPLOYEE_NAME, t0_.MANAGER_ID, t0_.HIREDATE,
t0_.SALARY, t0_.DEPARTMENT_ID, t0_.ADDRESS_ID, t0_.VERSION
from EMPLOYEE t0_
order by t0_.DEPARTMENT_ID asc, t0_.SALARY desc

Dynamic order by expression (NativeSql)

An order by expression uses only evaluated operators to build an ORDER BY clause.

When every operators are not evaluated in a order by expression,
the built statement doesn’t have any ORDER BY clause.

Distinct expression (Entityql, NativeSql)

List<Department> list =
 nativeSql
 .from(d)
 .distinct()
 .leftJoin(e, on -> on.eq(d.departmentId, e.departmentId))
 .fetch();

The above query issues the following SQL statement:

select distinct t0_.DEPARTMENT_ID, t0_.DEPARTMENT_NO, t0_.DEPARTMENT_NAME,
t0_.LOCATION, t0_.VERSION
from DEPARTMENT t0_
left outer join EMPLOYEE t1_ on (t0_.DEPARTMENT_ID = t1_.DEPARTMENT_ID)

Limit and Offset expression (Entityql, NativeSql)

Employee_ e = new Employee_();

List<Employee> list =
 nativeSql.from(e).limit(5).offset(3).orderBy(c -> c.asc(e.employeeNo)).fetch();

The above query issues the following SQL statement:

select t0_.EMPLOYEE_ID, t0_.EMPLOYEE_NO, t0_.EMPLOYEE_NAME, t0_.MANAGER_ID, t0_.HIREDATE,
t0_.SALARY, t0_.DEPARTMENT_ID, t0_.ADDRESS_ID, t0_.VERSION
from EMPLOYEE t0_
order by t0_.EMPLOYEE_NO asc
offset 3 rows fetch first 5 rows only

Dynamic Limit and Offset expression (Entityql, NativeSql)

A limit expressions uses only non-null value to build a FETCH FIRST clause.
When the value is null ,the built statement doesn’t have any FETCH FIRST clause.

As well as, an offset expressions uses only non-null value to build a OFFSET clause.
When the value is null ,the built statement doesn’t have any OFFSET clause.

For Update expression (Entityql, NativeSql)

Employee_ e = new Employee_();

List<Employee> list = nativeSql.from(e).where(c -> c.eq(e.employeeId, 1)).forUpdate().fetch();

The above query issues the following SQL statement:

select t0_.EMPLOYEE_ID, t0_.EMPLOYEE_NO, t0_.EMPLOYEE_NAME, t0_.MANAGER_ID, t0_.HIREDATE,
t0_.SALARY, t0_.DEPARTMENT_ID, t0_.ADDRESS_ID, t0_.VERSION
from EMPLOYEE t0_
where t0_.EMPLOYEE_ID = ?
for update

Union expression (NativeSql)

We support the following expressions:

	union

	unionAll - (union all)

Employee_ e = new Employee_();
Department_ d = new Department_();

List<Tuple2<Integer, String>> list =
 nativeSql
 .from(e)
 .select(e.employeeId, e.employeeName)
 .union(nativeSql.from(d)
 .select(d.departmentId, d.departmentName))
 .fetch();

The above query issues the following SQL statement:

select t0_.EMPLOYEE_ID, t0_.EMPLOYEE_NAME from EMPLOYEE t0_
union
select t0_.DEPARTMENT_ID, t0_.DEPARTMENT_NAME from DEPARTMENT t0_

The order by expression with index is supported:

Employee_ e = new Employee_();
Department_ d = new Department_();

List<Tuple2<Integer, String>> list =
 nativeSql
 .from(e)
 .select(e.employeeId, e.employeeName)
 .union(nativeSql.from(d)
 .select(d.departmentId, d.departmentName))
 .orderBy(c -> c.asc(2))
 .fetch();

Delete statement

For the specification of the where expression, see Where expression (Entityql, NativeSql).
The same rule is applied to delete statements.

Delete settings (Entityql, NativeSql)

We support the following settings:

	allowEmptyWhere

	batchSize

	comment

	ignoreVersion

	queryTimeout

	sqlLogType

	suppressOptimisticLockException

They are all optional.

You can apply them as follows:

Employee_ e = new Employee_();

int count = nativeSql.delete(e, settings -> {
 settings.setAllowEmptyWhere(true);
 settings.setBatchSize(20);
 settings.setComment("delete all");
 settings.setIgnoreVersion(true);
 settings.setQueryTimeout(1000);
 settings.setSqlLogType(SqlLogType.RAW);
 settings.setSuppressOptimisticLockException(true);
}).execute();

Note

If you want to build a delete statement without a WHERE clause,
you have to enable the allowEmptyWhere setting.

Delete statement (Entityql)

Employee_ e = new Employee_();

Employee employee = entityql.from(e).where(c -> c.eq(e.employeeId, 5)).fetchOne();

Result<Employee> result = entityql.delete(e, employee).execute();

The above query issues the following SQL statement:

delete from EMPLOYEE where EMPLOYEE_ID = ? and VERSION = ?

Batch Delete is also supported:

Employee_ e = new Employee_();

List<Employee> employees =
 entityql.from(e).where(c -> c.in(e.employeeId, Arrays.asList(5, 6))).fetch();

BatchResult<Employee> result = entityql.delete(e, employees).execute();

The execute method may throw following exceptions:

	OptimisticLockException: if the entity has a version property and an update count is 0

Delete statement (NativeSql)

Employee_ e = new Employee_();

int count = nativeSql.delete(e).where(c -> c.ge(e.salary, new Salary("2000"))).execute();

The above query issues the following SQL statement:

delete from EMPLOYEE t0_ where t0_.SALARY >= ?

Insert statement

Insert settings (Entityql, NativeSql)

We support the following settings:

	comment

	queryTimeout

	sqlLogType

	batchSize

	excludeNull

They are all optional.

You can apply them as follows:

Department_ d = new Department_();

int count =
 nativeSql
 .insert(d, settings -> {
 settings.setComment("insert department");
 settings.setQueryTimeout(1000);
 settings.setSqlLogType(SqlLogType.RAW);
 settings.setBatchSize(20);
 settings.excludeNull(true);
 })
 .values(
 c -> {
 c.value(d.departmentId, 99);
 c.value(d.departmentNo, 99);
 c.value(d.departmentName, "aaa");
 c.value(d.location, "bbb");
 c.value(d.version, 1);
 })
 .execute();

Insert statement (Entityql)

Department_ d = new Department_();

Department department = new Department();
department.setDepartmentId(99);
department.setDepartmentNo(99);
department.setDepartmentName("aaa");
department.setLocation("bbb");

Result<Department> result = entityql.insert(d, department).execute();

The above query issues the following SQL statement:

insert into DEPARTMENT (DEPARTMENT_ID, DEPARTMENT_NO, DEPARTMENT_NAME, LOCATION, VERSION)
values (?, ?, ?, ?, ?)

Batch Insert is also supported:

Department_ d = new Department_();

Department department = ...;
Department department2 = ...;
List<Department> departments = Arrays.asList(department, department2);

BatchResult<Department> result = entityql.insert(d, departments).execute();

The execute method may throw following exceptions:

	UniqueConstraintException: if an unique constraint is violated

Insert statement (NativeSql)

Department_ d = new Department_();

int count =
 nativeSql
 .insert(d)
 .values(
 c -> {
 c.value(d.departmentId, 99);
 c.value(d.departmentNo, 99);
 c.value(d.departmentName, "aaa");
 c.value(d.location, "bbb");
 c.value(d.version, 1);
 })
 .execute();

The above query issues the following SQL statement:

insert into DEPARTMENT (DEPARTMENT_ID, DEPARTMENT_NO, DEPARTMENT_NAME, LOCATION, VERSION)
values (?, ?, ?, ?, ?)

The execute method may throw following exceptions:

	UniqueConstraintException: if an unique constraint is violated

We also support the INSERT SELECT syntax as follows:

Department_ da = new Department_("DEPARTMENT_ARCHIVE");
Department_ d = new Department_();

int count =
 nativeSql
 .insert(da)
 .select(c -> c.from(d).where(cc -> cc.in(d.departmentId, Arrays.asList(1, 2))))
 .execute();

The above query issues the following SQL statement:

insert into DEPARTMENT_ARCHIVE (DEPARTMENT_ID, DEPARTMENT_NO, DEPARTMENT_NAME,
LOCATION, VERSION) select t0_.DEPARTMENT_ID, t0_.DEPARTMENT_NO, t0_.DEPARTMENT_NAME,
t0_.LOCATION, t0_.VERSION from DEPARTMENT t0_ where t0_.DEPARTMENT_ID in (?, ?)

Update statement

For the specification of the where expression, see Where expression (Entityql, NativeSql).
The same rule is applied to update statements.

Update settings (Entityql, NativeSql)

We support the following settings:

	allowEmptyWhere

	batchSize

	comment

	ignoreVersion

	queryTimeout

	sqlLogType

	suppressOptimisticLockException

	excludeNull

They are all optional.

You can apply them as follows:

Employee_ e = new Employee_();

int count = nativeSql.update(e, settings -> {
 settings.setAllowEmptyWhere(true);
 settings.setBatchSize(20);
 settings.setComment("update all");
 settings.setIgnoreVersion(true);
 settings.setQueryTimeout(1000);
 settings.setSqlLogType(SqlLogType.RAW);
 settings.setSuppressOptimisticLockException(true);
 settings.excludeNull(true);
}).set(c -> {
 c.value(e.employeeName, "aaa");
}).execute();

Note

If you want to build a update statement without a WHERE clause,
you have to enable the allowEmptyWhere setting.

Update statement (Entityql)

Employee_ e = new Employee_();

Employee employee = entityql.from(e).where(c -> c.eq(e.employeeId, 5)).fetchOne();
employee.setEmployeeName("aaa");
employee.setSalary(new Salary("2000"));

Result<Employee> result = entityql.update(e, employee).execute();

The above query issues the following SQL statement:

update EMPLOYEE set EMPLOYEE_NAME = ?, SALARY = ?, VERSION = ? + 1
where EMPLOYEE_ID = ? and VERSION = ?

Batch Update is also supported:

Employee_ e = new Employee_();

Employee employee = ...;
Employee employee2 = ...;
List<Employee> departments = Arrays.asList(employee, employee2);

BatchResult<Employee> result = entityql.update(e, employees).execute();

The execute method may throw following exceptions:

	OptimisticLockException: if the entity has a version property and an update count is 0

	UniqueConstraintException: if an unique constraint is violated

Update statement (NativeSql)

Employee_ e = new Employee_();

int count =
 nativeSql
 .update(e)
 .set(c -> c.value(e.departmentId, 3))
 .where(
 c -> {
 c.isNotNull(e.managerId);
 c.ge(e.salary, new Salary("2000"));
 })
 .execute();

The above query issues the following SQL statement:

update EMPLOYEE t0_ set t0_.DEPARTMENT_ID = ?
where t0_.MANAGER_ID is not null and t0_.SALARY >= ?

The execute method may throw following exceptions:

	UniqueConstraintException: if an unique constraint is violated

Property expressions (Entityql, NativeSql)

All expression methods are defined
in the org.seasar.doma.jdbc.criteria.expression.Expressions class.

Use them with static import.

Arithmetic expressions

We provide the following methods:

	add - (+)

	sub - (-)

	mul - (*)

	div - (/)

	mod - (%)

You can use the add method as follows:

Employee_ e = new Employee_();

int count =
 nativeSql
 .update(e)
 .set(c -> c.value(e.version, add(e.version, 10)))
 .where(c -> c.eq(e.employeeId, 1))
 .execute();

The above query issues the following SQL statement:

update EMPLOYEE t0_
set t0_.VERSION = (t0_.VERSION + ?)
where t0_.EMPLOYEE_ID = ?

String functions

We provide the following method:

	concat

	lower

	upper

	trim

	ltrim

	rtrim

You can use the concat method as follows:

Employee_ e = new Employee_();

int count =
 nativeSql
 .update(e)
 .set(c -> c.value(e.employeeName, concat("[", concat(e.employeeName, "]"))))
 .where(c -> c.eq(e.employeeId, 1))
 .execute();

The above query issues the following SQL statement:

update EMPLOYEE t0_
set t0_.EMPLOYEE_NAME = concat(?, concat(t0_.EMPLOYEE_NAME, ?))
where t0_.EMPLOYEE_ID = ?

Literal expression

We provide the following method:

	literal (for all basic data types)

You can use the literal method as follows:

Employee employee = entityql.from(e).where(c -> c.eq(e.employeeId, literal(1))).fetchOne();

The above query issues the following SQL statement:

select t0_.EMPLOYEE_ID, t0_.EMPLOYEE_NO, t0_.EMPLOYEE_NAME, t0_.MANAGER_ID, t0_.HIREDATE,
t0_.SALARY, t0_.DEPARTMENT_ID, t0_.ADDRESS_ID, t0_.VERSION
from EMPLOYEE t0_
where t0_.EMPLOYEE_ID = 1

Note

Note that the literal expressions are not recognized as bind variables.

Case expression

We support the following method:

	when

You can use the when method as follows:

Employee_ e = new Employee_();

List<String> list =
 nativeSql
 .from(e)
 .select(
 when(
 c -> {
 c.eq(e.employeeName, literal("SMITH"), lower(e.employeeName));
 c.eq(e.employeeName, literal("KING"), lower(e.employeeName));
 },
 literal("_")))
 .fetch();

The above query issues the following SQL statement:

select case
 when t0_.EMPLOYEE_NAME = 'SMITH' then lower(t0_.EMPLOYEE_NAME)
 when t0_.EMPLOYEE_NAME = 'KING' then lower(t0_.EMPLOYEE_NAME)
 else '_' end
from EMPLOYEE t0_

Subquery select expression

We support the following method:

	select

You can use the select method as follows:

Employee_ e = new Employee_();

Employee_ e = new Employee_();
Employee_ e2 = new Employee_();
Department_ d = new Department_();

SelectExpression<Salary> subSelect =
 select(
 c ->
 c.from(e2)
 .innerJoin(d, on -> on.eq(e2.departmentId, d.departmentId))
 .where(cc -> cc.eq(e.departmentId, d.departmentId))
 .groupBy(d.departmentId)
 .select(max(e2.salary)));

int count =
 nativeSql
 .update(e)
 .set(c -> c.value(e.salary, subSelect))
 .where(c -> c.eq(e.employeeId, 1))
 .execute();

The above query issues the following SQL statement:

update EMPLOYEE t0_
set t0_.SALARY = (
 select max(t1_.SALARY)
 from EMPLOYEE t1_
 inner join DEPARTMENT t2_ on (t1_.DEPARTMENT_ID = t2_.DEPARTMENT_ID)
 where t0_.DEPARTMENT_ID = t2_.DEPARTMENT_ID group by t2_.DEPARTMENT_ID
)
where t0_.EMPLOYEE_ID = ?

Tips

Execution in Dao (Entityql, NativeSql)

It is useful to execute DSLs in the default method of the Dao interface.
To get a config object, call Config.get(this) in the default method as follows:

@Dao
public interface EmployeeDao {

 default Optional<Employee> selectById(Integer id) {
 Entityql entityql = new Entityql(Config.get(this));

 Employee_ e = new Employee_();
 return entityql.from(e).where(c -> c.eq(e.employeeId, id)).fetchOptional();
 }
}

Overwriting the table name (Entityql, NativeSql)

A metamodel constructor accepts the qualified table name and
the metamodel overwrites its table name.

It is useful to handle two tables that have the same data structure:

Department_ da = new Department_("DEPARTMENT_ARCHIVE");
Department_ d = new Department_();

int count =
 nativeSql
 .insert(da)
 .select(c -> c.from(d))
 .execute();

insert into DEPARTMENT_ARCHIVE (DEPARTMENT_ID, DEPARTMENT_NO, DEPARTMENT_NAME,
LOCATION, VERSION) select t0_.DEPARTMENT_ID, t0_.DEPARTMENT_NO, t0_.DEPARTMENT_NAME,
t0_.LOCATION, t0_.VERSION from DEPARTMENT t0_

Debugging (Entityql, NativeSql)

To know the SQL statement built by the DSLs, use the asSql method:

Department_ d = new Department_();

Listable<Department> stmt = entityql.from(d).where(c -> c.eq(d.departmentName, "SALES"));

Sql<?> sql = stmt.asSql();
System.out.printf("Raw SQL : %s\n", sql.getRawSql());
System.out.printf("Formatted SQL: %s\n", sql.getFormattedSql());

The above code prints as follows:

Raw SQL : select t0_.DEPARTMENT_ID, t0_.DEPARTMENT_NO, t0_.DEPARTMENT_NAME, t0_.LOCATION, t0_.VERSION from DEPARTMENT t0_ where t0_.DEPARTMENT_NAME = ?
Formatted SQL: select t0_.DEPARTMENT_ID, t0_.DEPARTMENT_NO, t0_.DEPARTMENT_NAME, t0_.LOCATION, t0_.VERSION from DEPARTMENT t0_ where t0_.DEPARTMENT_NAME = 'SALES'

The asSql method doesn’t issue the SQL statement to your Database.
It only builds the SQL statement and return it as an Sql object.

You can also get the Sql object by calling the peek method.

Department_ d = new Department_();

List<String> locations = nativeSql
 .from(d)
 .peek(System.out::println)
 .where(c -> c.eq(d.departmentName, "SALES"))
 .peek(System.out::println)
 .orderBy(c -> c.asc(d.location))
 .peek(sql -> System.out.println(sql.getFormattedSql()))
 .select(d.location)
 .peek(sql -> System.out.println(sql.getFormattedSql()))
 .fetch();

The above code prints as follows:

select t0_.DEPARTMENT_ID, t0_.DEPARTMENT_NO, t0_.DEPARTMENT_NAME, t0_.LOCATION, t0_.VERSION from DEPARTMENT t0_
select t0_.DEPARTMENT_ID, t0_.DEPARTMENT_NO, t0_.DEPARTMENT_NAME, t0_.LOCATION, t0_.VERSION from DEPARTMENT t0_ where t0_.DEPARTMENT_NAME = ?
select t0_.DEPARTMENT_ID, t0_.DEPARTMENT_NO, t0_.DEPARTMENT_NAME, t0_.LOCATION, t0_.VERSION from DEPARTMENT t0_ where t0_.DEPARTMENT_NAME = 'SALES' order by t0_.LOCATION asc
select t0_.LOCATION from DEPARTMENT t0_ where t0_.DEPARTMENT_NAME = 'SALES' order by t0_.LOCATION asc

Sample projects

	simple-examples [https://github.com/domaframework/simple-examples]

	spring-boot-jpetstore [https://github.com/domaframework/spring-boot-jpetstore]

	kotlin-sample [https://github.com/domaframework/kotlin-sample]

SQL templates

Contents

	SQL templates

	Overview

	SQL templates in files

	Encoding

	Location

	Format of file path

	SQL templates in annotations

	Directives

	Bind variable directive

	Literal variable directive

	Embedded variable directive

	Condition directive

	Loop directive

	Expansion directive

	Population directive

	Comments

	Single line comment

	Multi line comment

Overview

Doma supports SQL templates, called “two-way SQL”.
“Two-way SQL” means that the SQL templates can be used in two ways:

	To build dynamic SQL statements from the templates.

	To execute the templates in SQL tools as they are.

Every SQL template must correspond to a DAO method.
For example, suppose you have the pair of an SQL template and a DAO method as follows:

select * from employee where employee_id = /* employeeId */99

Employee selectById(Integer employeeId);

The employeeId expression enclosed between /* and */ corresponds to
the method parameter “employeeId” of the DAO.
In runtime, the SQL comment and following number /* employeeId */99 is replaced with a bind variable ?
and the method parameter “employeeId” is passed to the variable.
The SQL statement generated from the SQL template is as follows:

select * from employee where employee_id = ?

The number 99 in the SQL template is test data and never used in runtime.
The test data is only useful when you execute the SQL template as is.
In other words, you can check whether the SQL template is grammatically correct with your favorite SQL tools.

Each SQL template is represented either a text file or an annotation.

SQL templates in files

You can specify SQL templates in text files:

@Dao
public interface EmployeeDao {
 @Select
 Employee selectById(Integer employeeId);

 @Delete(sqlFile = true)
 int deleteByName(Employee employee);
}

Above selectById and deleteByName methods are mapped onto their own SQL files.
DAO methods must be annotated with one of following annotations:

	@Select

	@Insert(sqlFile = true)

	@Update(sqlFile = true)

	@Delete(sqlFile = true)

	@BatchInsert(sqlFile = true)

	@BatchUpdate(sqlFile = true)

	@BatchDelete(sqlFile = true)

Encoding

The SQL files must be saved as UTF-8 encoded.

Location

The SQL files must be located in directories below a “META-INF” directory which is included in CLASSPATH.

Format of file path

The SQL file path must follow the following format:

META-INF/path-format-of-dao-interface/dao-method.sql

For example, when the DAO interface name is aaa.bbb.EmployeeDao and the DAO method name is selectById,
the SQL file path is as follows:

META-INF/aaa/bbb/EmployeeDao/selectById.sql

Dependency on a specific RDBMS

You can specify dependency on a specific RDBMS by file name.
To do this, put the hyphen “-” and RDBMS name before the extension “.sql”.
For example, the file path specific to PostgreSQL is as follows:

META-INF/aaa/bbb/EmployeeDao/selectById-postgres.sql

The SQL files specific to RDBMSs are given priority.
For example, in the environment where PostgreSQL is used,
“META-INF/aaa/bbb/EmployeeDao/selectById-postgres.sql”
is chosen instead of “META-INF/aaa/bbb/EmployeeDao/selectById.sql”.

The RDBMS names are stem from dialects:

	RDBMS

	Dialect

	RDBMS Name

	DB2

	Db2Dialect

	db2

	H2 Database

	H2Dialect

	h2

	HSQLDB

	HsqldbDialect

	hsqldb

	Microsoft SQL Server

	MssqlDialect

	mssql

	MySQL

	MySqlDialect

	mysql

	Oracle Database

	OracleDialect

	oracle

	PostgreSQL

	PostgresDialect

	postgres

	SQLite

	SqliteDialect

	sqlite

SQL templates in annotations

You can specify SQL templates to DAO methods with the @Sql annotation:

@Dao
public interface EmployeeDao {
 @Sql("select * from employee where employee_id = /* employeeId */99")
 @Select
 Employee selectById(Integer employeeId);

 @Sql("delete from employee where employee_name = /* employee.employeeName */'aaa'")
 @Delete
 int deleteByName(Employee employee);
}

The @Sql annotation must be combined with following annotations:

	@Select

	@Script

	@Insert

	@Update

	@Delete

	@BatchInsert

	@BatchUpdate

	@BatchDelete

Directives

In SQL templates, the SQL comments following the specific rules are recognised as directives.
Supported directives are as follows:

	Bind variable directive

	Literal variable directive

	Embedded variable directive

	Condition directive

	Loop directive

	Expansion directive

	Population directive

Note

See also Expression language for information of the expression language available in directives.

Bind variable directive

Bind variable directive is represented with the format /*...*/.
The expression enclosed between /* and */ is evaluated and
its evaluation result is passed to bind variable in SQL statement.
The directive must be followed by test data, which is never used in runtime.

Basic and domain parameters

The parameter whose type is one of Basic classes and Domain classes
is recognised as a bind variable.

The following example is the pair of a DAO method and an SQL template:

Employee selectById(Integer employeeId);

select * from employee where employee_id = /* employeeId */99

The following SQL statement is generated from the SQL template:

select * from employee where employee_id = ?

Parameters in IN clause

The parameter whose type is a subtype of java.lang.Iterable or an array type is
recognised as bind variables in IN clause.
The type argument of java.lang.Iterable must be one of Basic classes and Domain classes.
The directives must be followed by test data enclosed between (and).

The following example is the pair of a DAO method and an SQL template:

List<Employee> selectByIdList(List<Integer> employeeIdList);

select * from employee where employee_id in /* employeeIdList */(1,2,3)

In case that the employeeIdList contains five elements,
the following SQL statement is generated from the SQL template:

select * from employee where employee_id in (?, ?, ?, ?, ?)

In case that the employeeIdList is empty,
the IN clause is replaced with in (null) in runtime:

select * from employee where employee_id in (null)

Literal variable directive

Literal variable directive is represented with the format /*^...*/.
The expression enclosed between /*^ and */ is evaluated and
its evaluation result is converted to literal format to be embedded in SQL statement.
The directive must be followed by test data, which is never used in runtime.

The following example is the pair of a DAO method and an SQL template:

Employee selectByCode(String code);

select * from employee where code = /*^ code */'test'

The DAO method is invoked as follows:

EmployeeDao dao = new EmployeeDaoImpl();
List<Employee> list = dao.selectByCode("abc");

The generated SQL statement is as follows:

select * from employee where code = 'abc'

Note

Literal variable directives are helpful to avoid bind variables and fix SQL plans.

Warning

Literal variable directives do not escape parameters for SQL injection.
But the directives reject parameters containing the single quotation '.

Embedded variable directive

Embedded variable directive is represented with the format /*#...*/.
The expression enclosed between /*# and */ is evaluated and
its evaluation result is embedded in SQL statement.

The following example is the pair of a DAO method and an SQL template:

List<Employee> selectAll(BigDecimal salary, String orderBy);

select * from employee where salary > /* salary */100 /*# orderBy */

The DAO method is invoked as follows:

EmployeeDao dao = new EmployeeDaoImpl();
BigDecimal salary = new BigDecimal(1000);
String orderBy = "order by salary asc, employee_name";
List<Employee> list = dao.selectAll(salary, orderBy);

The generated SQL statement is as follows:

select * from employee where salary > ? order by salary asc, employee_name

Note

Embedded variable directives are helpful to build SQL fragments such as ORDER BY clause.

Warning

To prevent SQL injection vulnerabilities,
embedded variable directives reject parameters containing the following values:

	a single quotation '

	a semi colon ;

	two hyphen --

	a slash and an asterisk /*

Condition directive

Condition directive allows you to build SQL statements conditionally.

Synopsis

/*%if condition*/
 ...
/*%elseif condition2*/
 ...
/*%elseif condition3*/
 ...
/*%else*/
 ...
/*%end*/

The expressions condition, condition2, and condition3 must be evaluated
to either boolean or java.lang.Boolean.

The elseif directives and the else directive are optional.

if

Suppose you have the following SQL template:

select * from employee where
/*%if employeeId != null */
 employee_id = /* employeeId */99
/*%end*/

If the employeeId is not null, the generated SQL statement is as follows:

select * from employee where employee_id = ?

If the employeeId is null, the generated SQL statement is as follows:

select * from employee

The SQL keyword where is removed automatically.

elseif and else

Suppose you have the following SQL template:

select
 *
from
 employee
where
/*%if employeeId != null */
 employee_id = /* employeeId */9999
/*%elseif department_id != null */
 and
 department_id = /* departmentId */99
/*%else*/
 and
 department_id is null
/*%end*/

If the employeeId != null is evaluated true, the generated SQL statement is as follows:

select
 *
from
 employee
where
 employee_id = ?

If the employeeId == null && department_id != null is evaluated true,
the generated SQL statement is as follows:

select
 *
from
 employee
where
 department_id = ?

The SQL keyword and followed by department_id is remove automatically:

If the employeeId == null && department_id == null is evaluated true,
the generated SQL statement is as follows:

select
 *
from
 employee
where
 department_id is null

The SQL keyword and followed by department_id is remove automatically:

Nested condition directive

You can nest condition directives as follows:

select * from employee where
/*%if employeeId != null */
 employee_id = /* employeeId */99
 /*%if employeeName != null */
 and
 employee_name = /* employeeName */'hoge'
 /*%else*/
 and
 employee_name is null
 /*%end*/
/*%end*/

Removal of clauses on the condition directive

Following clauses can become unnecessary on the condition directive:

	WHERE

	HAVING

	ORDER BY

	GROUP BY

In the case, they are removed automatically.

Suppose you have the following SQL template:

select * from employee where
/*%if employeeId != null */
 employee_id = /* employeeId */99
/*%end*/

If the employeeId != null is evaluated false,
the generated SQL statement is as follows:

select * from employee

Because the SQL clause where followed by /*%if ...*/ is unnecessary,
it is removed automatically.

Removal of AND and OR keywords on the condition directives

AND and OR keywords can become unnecessary on the condition directive.
In the case, they are removed automatically.

Suppose you have the following SQL template:

select * from employee where
/*%if employeeId != null */
 employee_id = /* employeeId */99
/*%end*/
and employeeName like 's%'

If the employeeId != null is evaluated false,
the generated SQL statement is as follows:

select * from employee where employeeName like 's%'

Because the SQL keyword and following /*%end*/ is unnecessary,
it is removed automatically.

Restriction on condition directive

/*%if condition*/ and /*%end*/ must be included in
same SQL clause and in same statement level.

The following template is invalid, because /*%if condition*/ is
in the FROM clause and /*%end*/ is in the WHERE clause:

select * from employee /*%if employeeId != null */
where employee_id = /* employeeId */99 /*%end*/

The following template is invalid, because /*%if condition*/ is
in the outer statement and /*%end*/ is in the inner statement:

select * from employee
where employee_id in /*%if departmentId != null */(select ... /*%end*/ ...)

Loop directive

Loop directive allows you to build SQL statements using loop.

Synopsis

/*%for item : sequence*/
 ...
/*%end*/

The item is the loop variable.
The expression sequence must be evaluated to a subtype of java.lang.Iterable or an array type.

In the inside between /*%for item : sequence*/ and /*%end*/,
two extra loop variables are available:

	item_index

	The index (0-based number) of the current item in the loop

	item_has_next

	Boolean value that tells if the current item is the last in the sequence or not

The prefix item indicates the name of the loop variable.

for and item_has_next

Suppose you have the following SQL template:

select * from employee where
/*%for name : names */
employee_name like /* name */'hoge'
 /*%if name_has_next */
/*# "or" */
 /*%end */
/*%end*/

If the sequence names contains three items,
the generated SQL statement is as follows:

select * from employee where
employee_name like ?
or
employee_name like ?
or
employee_name like ?

Removal of clauses on the loop directive

Following clauses can become unnecessary on the loop directive:

	WHERE

	HAVING

	ORDER BY

	GROUP BY

In the case, they are removed automatically.

Suppose you have the following SQL template:

select * from employee where
/*%for name : names */
employee_name like /* name */'hoge'
 /*%if name_has_next */
/*# "or" */
 /*%end */
/*%end*/

If the sequence names is empty,
the generated SQL statement is as follows:

select * from employee

Because the SQL clause where followed by /*%for ...*/ is unnecessary,
it is removed automatically.

Removal of AND and OR keywords on the loop directive

AND and OR keywords can become unnecessary on the loop directive.
In the case, they are removed automatically.

Suppose you have the following SQL template:

select * from employee where
/*%for name : names */
employee_name like /* name */'hoge'
 /*%if name_has_next */
/*# "or" */
 /*%end */
/*%end*/
or
salary > 1000

If the sequence names is empty,
the generated SQL statement is as follows:

select * from employee where salary > 1000

Because the SQL keyword or following /*%end*/ is unnecessary,
it is removed automatically.

Restriction on loop directive

/*%for ...*/ and /*%end*/ must be included in
same SQL clause and in same statement level.

See also Restriction on condition directive.

Expansion directive

Expansion directive allows you to build column list of SELECT clause from the definition of Entity classes.

Synopsis

/*%expand alias*/

The expression alias is optional.
If it is specified, it must be evaluated to java.lang.String.

The directive must be followed by the asterisk *.

expand

Suppose you have the following SQL template and the entity class mapped to the template:

select /*%expand*/* from employee

@Entity
public class Employee {
 Integer id;
 String name;
 Integer age;
}

The generated SQL statement is as follows:

select id, name, age from employee

If you specify an alias to the table, specify same alias to the expansion directive:

select /*%expand "e" */* from employee e

The generated SQL statement is as follows:

select e.id, e.name, e.age from employee e

Population directive

Population directive allows you to build column list of
UPDATE SET clause from the definition of Entity classes.

Synopsis

/*%populate*/

populate

Suppose you have the following SQL template and the entity class mapped to the template:

update employee set /*%populate*/ id = id where age < 30

@Entity
public class Employee {
 Integer id;
 String name;
 Integer age;
}

The generated SQL statement is as follows:

update employee set id = ?, name = ?, age = ? where age < 30

Comments

This section show you how to distinguish between directives and normal SQL comments.

Single line comment

Always the string consisting of two hyphens -- is a single line comment.
It is never directive.

Multi line comment

If the character following /* is not permissible as the first character in a Java identifier
and it is neither %, #, @, " nor ',
the /* is beginning of a multi line comment.

The followings are the beginning of a multi line comment:

	/**…*/

	/*+…*/

	/*=…*/

	/*:…*/

	/*;…*/

	/*(…*/

	/*)…*/

	/*&…*/

In other hand, the followings are the beginning of a directive:

	/* …*/

	/*a…*/

	/*$…*/

	/*@…*/

	/*”…*/

	/*’…*/

	/*#…*/

	/*%…*/

Note

We recommend you always use /**...*/ to begin multi line comments because it is simple.

Expression language

Contents

	Expression language

	Literals

	Comparison operators

	Logical operators

	Arithmetic operators

	String concatenation operator

	Calling instance methods

	Accessing to instance fields

	Calling static methods

	Accessing to static fields

	Using built-in functions

	Using custom functions

You can write simple expressions in directives of SQL templates.
The grammar is almost the same as Java.
However, not everything is possible that Java can do.

Note

Especially, the big difference is how to use optional types like java.util.Optional.
In the expression, a value of Optional type is always converted
to a value of the element type automatically.
For example a value of the Optional<String> type is treated as a value of String type.
Therefore, we can’t call methods of Optional type,
nor do we call methods which have an Optional type in the parameters.

When you want to check existence of a value, use /*%if optional != null */
instead of /*%if optional.isPresent() */.

The same is true for java.util.OptionalInt, java.util.OptionalDouble,
and java.util.OptionalLong.

Literals

You can use the following literals:

	Literal

	Type

	null

	void

	true

	boolean

	false

	boolean

	10

	int

	10L

	long

	0.123F

	float

	0.123D

	double

	0.123B

	java.math.BigDecimal

	‘a’

	char

	“a”

	java.lang.String

The numeral types are distinguished by suffix letters such as L or F
at the end of the literals. The suffixes must be capital letters.

select * from employee where
/*%if employeeName != null && employeeName.length() > 10 */
 employee_name = /* employeeName */'smith'
/*%end*/

Comparison operators

You can use the following comparison operators:

	Operator

	Description

	==

	Equal to operator

	!=

	Not equal to operator

	<

	Less than operator

	<=

	Less than or equal to operator

	>

	Greater than operator

	>=

	Greater than or equal to operator

To use comparison operators, operands must implement java.lang.Comparable.

The operands for <, <=, > and >= must not be null.

select * from employee where
/*%if employeeName.indexOf("s") > -1 */
 employee_name = /* employeeName */'smith'
/*%end*/

Logical operators

You can use the following logical operators:

	Operator

	Description

	!

	Logical complement operator

	&&

	Conditional-AND operator

	||

	Conditional-OR operator

With parentheses, you can override the precedence of operators.

select * from employee where
/*%if (departmentId == null || managerId == null) and employee_name != null */
 employee_name = /* employeeName */'smith'
/*%end*/

Arithmetic operators

You can use the following arithmetic operators:

	Operator

	Description

	+

	Additive operator

	-

	Subtraction operator

	*

	Multiplication operator

	/

	Division operator

	%

	Remainder operator

Operands must be numeric type.

select * from employee where
 salary = /* salary + 1000 */0

String concatenation operator

You can concatenate characters using a concatenation operator +.

The operand must be one of the following types:

	java.lang.String

	java.lang.Character

	char

select * from employee where
 employee_name like /* employeeName + "_" */'smith'

Calling instance methods

You can call instance methods with the method names separated by dots ..
The method visibility must be public.

select * from employee where
/*%if employeeName.startsWith("s") */
 employee_name = /* employeeName */'smith'
/*%end*/

If the method has no argument, specify () after the method name.

select * from employee where
/*%if employeeName.length() > 10 */
 employee_name = /* employeeName */'smith'
/*%end*/

Accessing to instance fields

You can access instance fields with the field names separated by dots ..
Even if the visibility is private, you can access it.

select * from employee where
 employee_name = /* employee.employeeName */'smith'

Calling static methods

You can call static methods by continuing the method names
with the fully qualified class names enclosed in @.
The method visibility must be public.

select * from employee where
/*%if @java.util.regex.Pattern@matches("^[a-z]*$", employeeName) */
 employee_name = /* employeeName */'smith'
/*%end*/

Accessing to static fields

You can access static fields by continuing the field name
with the fully qualified class name enclosed in @.
Even if the visibility is private, you can access it.

select * from employee where
/*%if employeeName.length() < @java.lang.Byte@MAX_VALUE */
 employee_name = /* employeeName */'smith'
/*%end*/

Using built-in functions

Built-in functions are utilities mainly for changing values of binding variables
before binding them to SQL.

For example, when you run a prefix search with a LIKE clause,
you can write like this:

select * from employee where
 employee_name like /* @prefix(employee.employeeName) */'smith' escape '$'

@prefix(employee.employeeName) means that we pass employee.employeeName
to the @prefix function.
The @prefix function converts the character sequence which is received by the parameter
to a string for forward match search.
It also escapes special characters.
For example, if the value of employee.employeeName is ABC, it’s converted to ABC%.
If the value of employee.employeeName contains % such as AB%C,
the % is escaped with a default escape sequence $,
therefore the value is converted to AB$%C%.

You can use following function signatures:

	String @escape(CharSequence text, char escapeChar = ‘$’)

	Escapes the character sequence for LIKE operation.
The return value is a string which is a result of escaping the character sequence.
If escapeChar isn’t specified, $ is used as a default escape sequence.
It returns null if you pass null as a parameter.

	String @prefix(CharSequence prefix, char escapeChar = ‘$’)

	Converts the character sequence for prefix search.
The return value is a string which is a result of escaping the character sequence
and adding a wild card character at the end.
If escapeChar isn’t specified, $ is used as a default escape sequence.
It returns null if you pass null as a parameter.

	String @infix(CharSequence infix, char escapeChar = ‘$’)

	Converts the character sequence for infix search.
The return value is a string which is a result of escaping the character sequence
and adding wild card characters at the beginning and the end.
If escapeChar isn’t specified, $ is used as a default escape sequence.
It returns null if you pass null as a parameter.

	String @suffix(CharSequence suffix, char escapeChar = ‘$’)

	Converts the character sequence for suffix search.
The return value is a string which is a result of escaping the character sequence
and adding a wild card character at the beginning.
If escapeChar isn’t specified, $ is used as a default escape sequence.
It returns null if you pass null as a parameter.

	java.util.Date @roundDownTimePart(java.util.Date date)

	Rounds down the time part.
The return value is a new Date which is rounded down the time part.
It returns null if you pass null as a parameter.

	java.sql.Date @roundDownTimePart(java.sql.Date date)

	Rounds down the time part.
The return value is a new Date which is rounded down the time part.
It returns null if you pass null as a parameter.

	java.sql.Timestamp @roundDownTimePart(java.sql.Timestamp timestamp)

	Rounds down the time part.
The return value is a new Timestamp which is rounded down the time part.
It returns null if you pass null as a parameter.

	java.util.Date @roundUpTimePart(java.util.Date date)

	Rounds up the time part.
The return value is a new Date which is rounded up the time part.
It returns null if you pass null as a parameter.

	java.sql.Date @roundUpTimePart(java.sql.Date date)

	Rounds up the time part.
The return value is a new Date which is rounded up the time part.
It returns null if you pass null as a parameter.

	java.sql.Timestamp @roundUpTimePart(java.sql.Timestamp timestamp)

	Rounds up the time part.
The return value is a new Timestamp which is rounded up the time part.
It returns null if you pass null as a parameter.

	boolean @isEmpty(CharSequence charSequence)

	Returns true if the character sequence is null or the length is 0.

	boolean @isNotEmpty(CharSequence charSequence)

	Returns true if the character sequence isn’t null and the length isn’t 0.

	boolean @isBlank(CharSequence charSequence)

	Returns true only if the character sequence is null, the length is 0,
or the sequence is formed with whitespaces only.

	boolean @isNotBlank(CharSequence charSequence)

	Returns true if the character sequence isn’t null, the length isn’t 0,
and the sequence isn’t formed with whitespaces only.

These functions are correspond to the methods of org.seasar.doma.expr.ExpressionFunctions.

Using custom functions

You can define and use your own functions.

You need to follow these settings when you use custom functions which you define by yourself:

	The function is defined as a method of a class which implements
org.seasar.doma.expr.ExpressionFunctions.

	The method is a public instance method.

	The class is registered as an option in Annotation processing.
The key of the option is doma.expr.functions.

	The instance of the class you create is used in an RDBMS dialect in your configuration class
(The implementations of RDBMS dialect provided by Doma can receive
ExpressionFunctions in the constructor).

To call a custom function, add @ at the beginning of the function name like built-in functions.
For example, you can call myfunc function like this:

select * from employee where
 employee_name = /* @myfunc(employee.employeeName) */'smith'

Transaction

Contents

	Transaction

	Configuration

	Usage

	Start and finish transactions

	Explicit rollback

	Savepoint

Doma supports local transaction.
This document explains how to configure and use the local transaction.

If you want to use global transaction, use frameworks or application servers
which support JTA (Java Transaction API).

See also Configuration definition .

Configuration

To use local transaction, these conditions are required:

	Return LocalTransactionDataSource from getDataSource in Config

	Generate LocalTransactionManager using the LocalTransactionDataSource above in the constructor

	Use the LocalTransactionManager above to control database access

There are several ways to generate and get the LocalTransactionManager,
but the simplest way is to generate it in the constructor of Config implementation class
and make the Config implementation class singleton.

Here is an example:

public class DbConfig implements Config {

 private static final DbConfig CONFIG = new DbConfig();

 private final Dialect dialect;

 private final LocalTransactionDataSource dataSource;

 private final TransactionManager transactionManager;

 private DbConfig() {
 dialect = new H2Dialect();
 dataSource = new LocalTransactionDataSource(
 "jdbc:h2:mem:tutorial;DB_CLOSE_DELAY=-1", "sa", null);
 transactionManager = new LocalTransactionManager(
 dataSource.getLocalTransaction(getJdbcLogger()));
 }

 @Override
 public Dialect getDialect() {
 return dialect;
 }

 @Override
 public DataSource getDataSource() {
 return dataSource;
 }

 @Override
 public TransactionManager getTransactionManager() {
 return transactionManager;
 }

 public static DbConfig singleton() {
 return CONFIG;
 }
}

Usage

We use the following DAO interface in example code:

@Dao
public interface EmployeeDao {
 @Sql("select /*%expand*/* from employee where id = /*id*/0")
 @Select
 Employee selectById(Integer id);

 @Update
 int update(Employee employee);

 @Delete
 int delete(Employee employee);
}

Start and finish transactions

You can start a transaction with one of following methods of TransactionManager:

	required

	requiresNew

	notSupported

Use a lambda expression to write a process which you want to run in a transaction.

TransactionManager tm = DbConfig.singleton().getTransactionManager();
EmployeeDao dao = new EmployeeDaoImpl(DbConfig.singleton());

tm.required(() -> {
 Employee employee = dao.selectById(1);
 employee.setName("hoge");
 employee.setJobType(JobType.PRESIDENT);
 dao.update(employee);
});

The transaction is committed if the lambda expression finishes successfully.
The transaction is rolled back if the lambda expression throws an exception.

Explicit rollback

Besides throwing an exception, you can use setRollbackOnly method to rollback a transaction.

TransactionManager tm = DbConfig.singleton().getTransactionManager();
EmployeeDao dao = new EmployeeDaoImpl(DbConfig.singleton());

tm.required(() -> {
 Employee employee = dao.selectById(1);
 employee.setName("hoge");
 employee.setJobType(JobType.PRESIDENT);
 dao.update(employee);
 // Mark as rollback
 tm.setRollbackOnly();
});

Savepoint

With a savepoint, you can cancel specific changes in a transaction.

TransactionManager tm = DbConfig.singleton().getTransactionManager();
EmployeeDao dao = new EmployeeDaoImpl(DbConfig.singleton());

tm.required(() -> {
 // Search and update
 Employee employee = dao.selectById(1);
 employee.setName("hoge");
 dao.update(employee);

 // Create a savepoint
 tm.setSavepoint("beforeDelete");

 // Delete
 dao.delete(employee);

 // Rollback to the savepoint (cancel the deletion above)
 tm.rollback("beforeDelete");
});

Building an application

Contents

	Building an application

	Before You Start

	Maven Central Repository

	Build with Gradle

	Build with IntelliJ IDEA

	Build with Eclipse

Before You Start

Maven Central Repository

You can pull the artifacts of the Doma framework from the Maven central repository.
We provide two artifacts, doma-core and doma-processor.

The doma-core artifact is required at runtime and compile-time.
The doma-processor artifact provides annotation processors and is required at compile-time only.

The group id and artifact id of those artifacts are as follows:

	GroupId

	org.seasar.doma

	ArtifactId

	doma-core

	GroupId

	org.seasar.doma

	ArtifactId

	doma-processor

Build with Gradle

Write your build.gradle as follows:

dependencies {
 implementation "org.seasar.doma:doma-core:2.44.0"
 annotationProcessor "org.seasar.doma:doma-processor:2.44.0"
}

To simplify your build.script, we recommend that you use the Doma Compile Plugin [https://github.com/domaframework/doma-compile-plugin].

See build.gradle in the simple-boilerplate [https://github.com/domaframework/simple-boilerplate] repository as an example.

Build with IntelliJ IDEA

Use a newer version of IntelliJ IDEA, and then import your project as a Gradle project.

Build with Eclipse

Generate eclipse setting files with Gradle, and then import your project into Eclipse.
To generate the setting files, run gradle eclipse.

To simplify your build.script, we recommend that you use the Doma Compile Plugin [https://github.com/domaframework/doma-compile-plugin] and the AptEclipsePlugin [https://plugins.gradle.org/plugin/com.diffplug.eclipse.apt].

See build.gradle in the simple-boilerplate [https://github.com/domaframework/simple-boilerplate] repository as an example.

Annotation processing

Contents

	Annotation processing

	Options

	Setting options in Gradle

	Setting options in IntelliJ IDEA

	Setting options in Eclipse

	Setting options with configuration file

Doma uses Pluggable Annotation Processing API [https://www.jcp.org/en/jsr/detail?id=269] at compile time.

In this document, we describe the options for the annotation processors in Doma
and show you how to pass them to build tools.

Options

	doma.dao.package

	The package that the generated implementation classes of interfaces annotated with @Dao belong to.
The specified value overrides the value of doma.dao.subpackage.
The default value is the same package as the one the interfaces annotated with @Dao belong to.

	doma.dao.subpackage

	The subpackage that the generated implementation classes of interfaces annotated with @Dao belong to.
The specified value is overridden by the value of doma.dao.package.
If this value is impl and the package of interfaces annotated with @Dao is example.dao,
the generated implementation classes belong to the package example.dao.impl.

	doma.dao.suffix

	The name suffix that the generated implementation classes of interfaces annotated with @Dao have.
If this value is Bean and the simple name of the interface annotated with @Dao is EmployeeDao,
the simple name of the generated implementation class is EmployeeDaoBean.
The default value is Impl.

	doma.debug

	Whether to output the debug log in annotation processing.
If the value is true, the annotation processors output the debug log.
The default value is false.

	doma.domain.converters

	The full qualified names of the classes annotated with @DomainConverters.
The names are described as comma separated list.
This value are used to find external domain classes.

	doma.entity.field.prefix

	The name prefix that the fields of the generated entity meta classes have.
The value none means the prefix is not used.
The default value is $.

	doma.expr.functions

	The full qualified name of the class that implements org.seasar.doma.expr.ExpressionFunctions.
The default value is org.seasar.doma.expr.ExpressionFunctions.
This value are used to determine which functions are available in expression comments.

	doma.metamodel.enabled

	Whether to generate meta classes for the Criteria API.
When the value is true, metamodels are generated for all entity classes
even if they are not specified with metamodel = @Metamodel.
The default value is false.

	doma.metamodel.prefix

	The name prefix of the metamodel classes for the Criteria API.
The default value is an empty string.

	doma.metamodel.suffix

	The name suffix of the metamodel classes for the Criteria API.
The default value is _.

	doma.resources.dir

	The resource directory that contains the resource files such as a doma.compile.config file and sql files.
Specify the value as an absolute path.
If the value is not specified, the resource directory is same as the directory the classes are generated.

	doma.sql.validation

	Whether to validate the existence of sql files and the grammar of sql comments.
If the value is true, the validations run.
To disable the validations, set false.
The default value is true.

	doma.version.validation

	Whether to validate the versions of doma.jar between runtime and compile-time.
If the value is true, the validation runs.
To disable the validation, set false.
The default value is true.

	doma.config.path

	The file path of the configuration file for Doma.
The default value is doma.compile.config.

Setting options in Gradle

Use the compilerArgs property [https://docs.gradle.org/5.0/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:compilerArgs]:

compileJava {
 options {
 compilerArgs = ['-Adoma.dao.subpackage=impl', '-Adoma.dao.suffix=Impl']
 }
}

Setting options in IntelliJ IDEA

Import your project as a Gradle project.
In the case, the options written in build.gradle are used.

Setting options in Eclipse

Use the Gradle plugin com.diffplug.eclipse.apt [https://plugins.gradle.org/plugin/com.diffplug.eclipse.apt]
and the processorArgs property:

plugins {
 id 'com.diffplug.eclipse.apt' version '3.22.0'
}

compileJava {
 aptOptions {
 processorArgs = [
 'doma.dao.subpackage' : 'impl', 'doma.dao.suffix' : 'Impl'
]
 }
}

When you run gradle eclipse, eclipse setting files are generated.

Setting options with configuration file

The options specified in the doma.compile.config file are available in all build tools
such as Eclipse, IDEA, Gradle and so on.

The doma.compile.config file must follow the properties file format
and be placed in the root directory such as src/main/resources.

Note

The options specified in the doma.compile.config file are overridden by
the ones specific to the build tools.

Lombok support

Contents

	Lombok support

	Overview

	Best practices

	Entity class definition

	Domain class definition

	Embeddable class definition

Doma supports Lombok [https://projectlombok.org/] 1.16.12 or above.

Note

If you intend to use Eclipse, use version 4.5 or above.

Overview

Both Lombok and Doma provide annotation processors.
Because the execution order of annotation processors is not determined in Java,
Doma’s annotation processors are not always aware of the class modifications made by
Lombok annotation processors.

To resolve the issue, Doma’s annotation processors recognize several of Lombok’s annotations
and change their behavior.
For example, if Doma’s annotation processors find a class annotated with @lombok.Value,
they suppose that the class has a constructor whose arguments cover all instance fields.

Best practices

We show you recommended ways to define classes with Lombok annotations.

Entity class definition

immutable entity classes

	Specify true to the immutable element of @Entity

	Specify either @lombok.Value or @lombok.AllArgsConstructor

	Specify @lombok.Getter to generate getters, in case of @lombok.AllArgsConstructor

@Entity(immutable = true)
@Value
public class Employee {
 @Id
 Integer id;
 String name;
 Age age;
}

@Entity(immutable = true)
@AllArgsConstructor
@Getter
public class Worker {
 @Id
 private final Integer id;
 private final String name;
 private final Age age;
}

mutable entity classes

	Define a default constructor

	Specify @lombok.Data or @lombok.Getter/@lombok.Setter to generate getters/setters

@Entity
@Data
public class Person {
 @Id
 private Integer id;
 private String name;
 private Age age;
}

@Entity
@Getter
@Setter
public class Businessman {
 @Id
 private Integer id;
 private String name;
 private Age age;
}

Domain class definition

	Specify @lombok.Value

	Define only one instance field whose name is value

@Domain(valueType = Integer.class)
@Value
public class Age {
 Integer value;
}

Embeddable class definition

	Specify either @lombok.Value or @lombok.AllArgsConstructor

	Specify @lombok.Getter to generate getters, in case of @lombok.AllArgsConstructor

@Embeddable
@Value
public class Address {
 String street;
 String city;
}

@Embeddable
@AllArgsConstructor
@Getter
public class Location {
 private final String street;
 private final String city;
}

Kotlin support

Contents

	Kotlin support

	Best practices

	Entity classes

	Domain classes

	Embeddable classes

	Dao interfaces

	Kotlin specific Criteria API

	Code Generation

	Using kapt in Gradle

	Sample project

Doma supports Kotlin [https://kotlinlang.org/] 1.4.0 or later.

Best practices

Here are some recommended methods, such as defining classes and building them with Kotlin.

Entity classes

	Define as a plain class

	Specify a Metamodel annotation to the metamodel element of @Entity

@Entity(metamodel = Metamodel())
class Person : AbstractPerson() {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 var id: Int = -1

 var name: Name? = null

 var age: Int? = -1

 var address: Address? = null

 @Column(name = "DEPARTMENT_ID")
 var departmentId: Int = -1

 @Version
 var version: Int = -1
}

Domain classes

	Define as a data class

	Define only one constructor

	Define only one property whose name is value in the constructor

	Use val for the property definition

@Domain(valueType = String::class)
data class Name(val value: String)

Embeddable classes

	Define as a data class

	Define only one constructor

	Define properties only in the constructor

	Use val for the property definitions

@Embeddable
data class Address(val city: String, val street: String)

Dao interfaces

	Specify a SQL template to @org.seasar.doma.Sql

	Use org.seasar.doma.jdbc.Result as the return type of @Delete, @Insert and @Update

	Use org.seasar.doma.jdbc.BatchResult as the return type of
@BatchDelete, @BatchInsert and @BatchUpdate

@Dao
interface PersonDao {
 @Sql("""
 select * from person where id = /*id*/0
 """)
 @Select
 fun selectById(id: Int): Person

 @Insert
 fun insert(Person person): Result<Person>
}

	Use Destructuring Declarations [https://kotlinlang.org/docs/reference/multi-declarations.html]
for org.seasar.doma.jdbc.Result and org.seasar.doma.jdbc.BatchResult

val dao: PersonDao = ...
val person = Person(name = Name("Jhon"), address = Address(city = "Tokyo", street = "Yaesu"))
val (newPerson, count) = dao.insert(person)

Kotlin specific Criteria API

Note

Prefer the Kotlin specific Criteria API to DAO interfaces.

Doma provides Kotlin specific Criteria API, KEntityql and KNativeQl DSLs.
They are very similar with the Entityql and NativeQl DSLs, which are described in Criteria API.
The biggest feature of the KEntityql and KNativeQl DSLs is simplicity.

For example, when you use KEntityql, you have to accept a lambda parameter in a WHERE expression as follows:

val entityql = Entityql(config)
val e = Employee_()

val list = entityql
 .from(e)
 .where { c ->
 c.eq(e.departmentId, 2)
 c.isNotNull(e.managerId)
 c.or {
 c.gt(e.salary, Salary("1000"))
 c.lt(e.salary, Salary("2000"))
 }
 }
 .fetch()

The lambda parameter c is a bit annoying.
On the other hand, when you use KEntityql, the parameter is gone.

val entityql = KEntityql(config)
val e = Employee_()

val list = entityql
 .from(e)
 .where {
 eq(e.departmentId, 2)
 isNotNull(e.managerId)
 or {
 gt(e.salary, Salary("1000"))
 lt(e.salary, Salary("2000"))
 }
 }
 .fetch()

You can see a lot of sample code here [https://github.com/domaframework/doma-it/tree/master/kotlin/src/test/kotlin/org/seasar/doma/it/criteria].

The KEntityql and KNativeQl DSLs are included in doma-kotlin.jar.
Note that you should depend on doma-kotlin instead of doma-core in your build script.
You can write build.gradle.kts as follows:

dependencies {
 implementation("org.seasar.doma:doma-kotlin:2.44.0")
}

Code Generation

Use Doma CodeGen Plugin [https://github.com/domaframework/doma-codegen-plugin].
This plugin support Kotlin code generation.

Using kapt in Gradle

Annotation processors are supported in Kotlin with the
kapt [https://kotlinlang.org/docs/reference/kapt.html] compiler plugin.

Add the dependencies using the kapt and implementation configuration in your dependencies block.
For example, you can write build.gradle.kts as follows:

dependencies {
 kapt("org.seasar.doma:doma-processor:2.44.0")
 implementation("org.seasar.doma:doma-kotlin:2.44.0")
}

To simplify your build script, we recommend you use
the Doma Compile Plugin [https://github.com/domaframework/doma-compile-plugin]:

Sample project

	kotlin-sample [https://github.com/domaframework/kotlin-sample]

SLF4J support

Contents

	SLF4J support

	Overview

	Gradle

	Configuration

	Loggers

	Examples

	Log all

	Log all SQL statements

	Log only SELECT statements

Overview

Doma uses java util logging as underling logging framework,
but you can replace it with SLF4J [http://www.slf4j.org/] easily.

Gradle

Doma provides the doma-slf4j artifact to adapt SLF4J.

dependencies {
 implementation("org.seasar.doma:doma-slf4j:2.44.0")
 // Use an arbitrary SLF4J binding
 runtimeOnly("ch.qos.logback:logback-classic:1.2.3")
}

Configuration

Return a org.seasar.doma.jdbc.Slf4jJdbcLogger instance from
the getJdbcLogger method of the org.seasar.doma.jdbc.Config implementation class.

See also Logger.

Loggers

doma-slf4j provides several loggers as follows:

	org.seasar.doma.jdbc.LogKind.DAO

	org.seasar.doma.jdbc.LogKind.FAILURE

	org.seasar.doma.jdbc.LogKind.LOCAL_TRANSACTION

	org.seasar.doma.jdbc.LogKind.SKIP.STATE_UNCHANGED

	org.seasar.doma.jdbc.LogKind.SKIP.BATCH_TARGET_NONEXISTENT

	org.seasar.doma.jdbc.LogKind.SQL.BATCH_DELETE

	org.seasar.doma.jdbc.LogKind.SQL.BATCH_INSERT

	org.seasar.doma.jdbc.LogKind.SQL.BATCH_UPDATE

	org.seasar.doma.jdbc.LogKind.SQL.DELETE

	org.seasar.doma.jdbc.LogKind.SQL.FUNCTION

	org.seasar.doma.jdbc.LogKind.SQL.INSERT

	org.seasar.doma.jdbc.LogKind.SQL.PROCEDURE

	org.seasar.doma.jdbc.LogKind.SQL.SCRIPT

	org.seasar.doma.jdbc.LogKind.SQL.SELECT

	org.seasar.doma.jdbc.LogKind.SQL.SQL_PROCESSOR

	org.seasar.doma.jdbc.LogKind.SQL.UPDATE

See source code [https://github.com/domaframework/doma/blob/master/doma-slf4j/src/main/java/org/seasar/doma/jdbc/Slf4jJdbcLogger.java]
for more information. It’s simple.

Examples

Below, we show you logback [http://logback.qos.ch/] configurations.

Log all

<configuration>
 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
 <encoder>
 <pattern>%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n</pattern>
 </encoder>
 </appender>

 <logger name="org.seasar.doma.jdbc.LogKind" level="debug"/>

 <root level="info">
 <appender-ref ref="STDOUT" />
 </root>
</configuration>

Log all SQL statements

<configuration>
 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
 <encoder>
 <pattern>%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n</pattern>
 </encoder>
 </appender>

 <logger name="org.seasar.doma.jdbc.LogKind.SQL" level="debug"/>

 <root level="info">
 <appender-ref ref="STDOUT" />
 </root>
</configuration>

Log only SELECT statements

<configuration>
 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
 <encoder>
 <pattern>%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n</pattern>
 </encoder>
 </appender>

 <logger name="org.seasar.doma.jdbc.LogKind.SQL.SELECT" level="debug"/>

 <root level="info">
 <appender-ref ref="STDOUT" />
 </root>
</configuration>

Frequently Asked Questions

Contents

	Frequently Asked Questions

	General

	What does “Doma” mean?

	What is annotation processing?

	Runtime environment

	Which version of JRE does Doma support?

	Which libraries are required for Doma to work?

	Development environment

	Which version of JDK does Doma support?

	Which IDE do you recommend?

	In Eclipse, the jar file of Doma is added to the Java Build Path but annotation processing doesn’t run.

	Where are generated source files in annotation processing?

	In Eclipse, where is the .apt_generated directory?

	I get the message that the sql file is not found, but it exists.

	Do you provide any code generation tools?

	Features as a database access library

	Does Doma generate SQL statements?

	How are dynamic SQL statements executed?

	Does Doma map database relationships such as one-to-one and one-to-many to Java objects?

	Does Doma provide a JDBC connection pooling feature?

General

What does “Doma” mean?

The name “Doma” comes from the “Dao Oriented database MApping framework”.

What is annotation processing?

Annotation processing, that was introduced in Java 6,
allows us to validate and generate source code at compile time.

We use annotation processing for the following purposes:

	Generating meta classes from the classes annotated with @Entity and @Domain.

	Generating implementation classes of the interfaces annotated with @Dao.

	Validating SQL templates.

Runtime environment

Which version of JRE does Doma support?

JRE 8 and above.

Which libraries are required for Doma to work?

None.

Doma has no dependencies on other libraries.

Development environment

Which version of JDK does Doma support?

JDK 8 and above.

Which IDE do you recommend?

We recommend Eclipse and IntelliJ IDEA.

In Eclipse, the jar file of Doma is added to the Java Build Path but annotation processing doesn’t run.

Enable annotation processing and add the jar file to the Factory Path too.
See also Build with Eclipse.

Where are generated source files in annotation processing?

In Eclipse, they are found in the .apt_generated directory.

In Eclipse, where is the .apt_generated directory?

You can find it in the Navigator view.

I get the message that the sql file is not found, but it exists.

You may get the following message, though the file exists:

[DOMA4019] The file[META-INF/../select.sql] is not found from the classpath

When you use Eclipse, check that the location of the output folder of resources is
same as the one for the class files in the Java Build Path dialog.
You can avoid this trouble by generating eclipse setting files automatically.
See also Build with Eclipse.

When you use Gradle, check that the resource files are copied to compileJava.destinationDir
in advance of the compileJava task.
You can avoid this trouble by using the Doma Compile Plugin.
See also Build with Gradle.

Do you provide any code generation tools?

Yes.
We have the Doma CodeGen plugin [https://github.com/domaframework/doma-codegen-plugin]
that generates Java and SQL files from Database.

Features as a database access library

Does Doma generate SQL statements?

Yes, Doma generates the following statements:

	SELECT

	INSERT

	DELETE

	UPDATE

	Stored procedure call

	Stored function call

How are dynamic SQL statements executed?

There are two ways:

	The SQL Templates.

	The Criteria API.

See SQL templates and Criteria API for detail information.

Does Doma map database relationships such as one-to-one and one-to-many to Java objects?

Yes.

Doma provides the Criteria API to map database relationships to Java entities.

See association (Entityql) for detail information.

Does Doma provide a JDBC connection pooling feature?

No.

Use Doma together with
a JDBC connection pool library such as HikariCP [https://github.com/brettwooldridge/HikariCP].

Index

 _images/doma.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Doma 2

 		
 Getting started

 		
 Summary

 		
 Install JDK

 		
 Get sample project

 		
 Sample project structure

 		
 Import project to your IDE

 		
 Eclipse

 		
 IntelliJ IDEA

 		
 Programming styles

 		
 DSL style

 		
 SELECT

 		
 DELETE

 		
 INSERT

 		
 UPDATE

 		
 DAO style

 		
 SELECT (DAO)

 		
 DELETE (DAO)

 		
 INSERT (DAO)

 		
 UPDATE (DAO)

 		
 Next Step

 		
 Configuration

 		
 Configurable items

 		
 DataSource

 		
 DataSource’s name

 		
 SQL dialect

 		
 Logger

 		
 SQL File Repository

 		
 Controlling REQUIRES_NEW transaction

 		
 Loading classes

 		
 Choosing SQL format contained in exception messages

 		
 Handling unknown columns

 		
 Naming convention for tables and columns

 		
 Naming convention for keys of java.util.Map

 		
 Local transaction manager

 		
 Adding SQL identifiers to the SQLs as a comment

 		
 Command implementors

 		
 Query implementors

 		
 Query timeout

 		
 Max rows

 		
 Fetch size

 		
 Batch size

 		
 Providing entity listeners

 		
 Loading JDBC drivers

 		
 Configuration definition

 		
 Simple definition

 		
 Advanced definition

 		
 Basic classes

 		
 Overview

 		
 List of basic classes

 		
 Differences between temporal classes

 		
 Examples

 		
 Using in entity class

 		
 Using in domain class

 		
 Using in DAO interface

 		
 Domain classes

 		
 Internal domain classes

 		
 Instantiation with a constructor

 		
 Instantiation with a static factory method

 		
 Using type parameters in internal domain classes

 		
 External domain classes

 		
 Using type parameters in external domain classes

 		
 Example

 		
 Embeddable classes

 		
 Embeddable definition

 		
 Naming convention

 		
 Field definition

 		
 Column

 		
 Transient

 		
 Method definition

 		
 Example

 		
 Entity classes

 		
 Entity definition

 		
 Entity listeners

 		
 Naming convention

 		
 Immutable

 		
 Table

 		
 Field definition

 		
 Column

 		
 Id

 		
 Version

 		
 Tenant Id

 		
 Transient

 		
 OriginalStates

 		
 Method definition

 		
 Example

 		
 Dao interfaces

 		
 Dao definition

 		
 Query definition

 		
 Default method

 		
 Example

 		
 Queries

 		
 Search

 		
 Query condition

 		
 Single record search

 		
 Multiple record search

 		
 Stream search

 		
 Collect search

 		
 Using search option search

 		
 Ensure of search result

 		
 Ensure of mapping search result

 		
 Query timeout

 		
 Fetch size

 		
 Max row count

 		
 Naming rule of map’s key

 		
 SQL log output format

 		
 Insert

 		
 Return value

 		
 Insert by auto generated SQL

 		
 Insert by SQL file

 		
 Unique constraint violation

 		
 Query timeout

 		
 SQL log output format

 		
 Update

 		
 Return value

 		
 Update by auto generated SQL

 		
 Update by SQL file

 		
 Unique constraint violation

 		
 Query timeout

 		
 SQL log output format

 		
 Delete

 		
 Return value

 		
 Delete by auto generated SQL

 		
 Delete by SQL file

 		
 Query timeout

 		
 SQL log output format

 		
 Batch insert

 		
 Return value

 		
 Batch insert by auto generated SQL

 		
 Batch insert by SQL file

 		
 Unique constraint violation

 		
 Query timeout

 		
 Batch size

 		
 SQL log output format

 		
 Batch update

 		
 Return value

 		
 Batch update by auto generated SQL

 		
 Batch update by SQL file

 		
 Unique constraint violation

 		
 Query timeout

 		
 Batch size

 		
 SQL log output format

 		
 Batch delete

 		
 Return value

 		
 Batch delete by auto generated SQL

 		
 Batch delete by SQL file

 		
 Query timeout

 		
 Batch size

 		
 SQL log output format

 		
 Stored function

 		
 Return type

 		
 Function name

 		
 Parameters

 		
 Stored procedure

 		
 Return Type

 		
 Procedure name

 		
 Parameters

 		
 Factories

 		
 Creating Array instances

 		
 Creating Blob instances

 		
 Creating Clob instances

 		
 Creating NClob instances

 		
 Creating SQLXML instances

 		
 Script

 		
 Script representation

 		
 Delimiter

 		
 Stopping on error

 		
 Example

 		
 SQL processor

 		
 Return type

 		
 Parameter

 		
 Example

 		
 Query builders

 		
 Search

 		
 Single record search

 		
 Multiple records search

 		
 Stream search

 		
 Insert

 		
 Update

 		
 Delete

 		
 Criteria API

 		
 Introduction

 		
 Entityql DSL

 		
 NativeSql DSL

 		
 The difference between two DSLs

 		
 Select statement

 		
 Select settings (Entityql, NativeSql)

 		
 Fetching (Entityql, NativeSql)

 		
 Streaming (NativeSql)

 		
 Select expression

 		
 Where expression (Entityql, NativeSql)

 		
 Join expression

 		
 Aggregate Functions (NativeSql)

 		
 Group by expression (NativeSql)

 		
 Having expression (NativeSql)

 		
 Order by expression (Entityql, NativeSql)

 		
 Distinct expression (Entityql, NativeSql)

 		
 Limit and Offset expression (Entityql, NativeSql)

 		
 For Update expression (Entityql, NativeSql)

 		
 Union expression (NativeSql)

 		
 Delete statement

 		
 Delete settings (Entityql, NativeSql)

 		
 Delete statement (Entityql)

 		
 Delete statement (NativeSql)

 		
 Insert statement

 		
 Insert settings (Entityql, NativeSql)

 		
 Insert statement (Entityql)

 		
 Insert statement (NativeSql)

 		
 Update statement

 		
 Update settings (Entityql, NativeSql)

 		
 Update statement (Entityql)

 		
 Update statement (NativeSql)

 		
 Property expressions (Entityql, NativeSql)

 		
 Arithmetic expressions

 		
 String functions

 		
 Literal expression

 		
 Case expression

 		
 Subquery select expression

 		
 Tips

 		
 Execution in Dao (Entityql, NativeSql)

 		
 Overwriting the table name (Entityql, NativeSql)

 		
 Debugging (Entityql, NativeSql)

 		
 Sample projects

 		
 SQL templates

 		
 Overview

 		
 SQL templates in files

 		
 Encoding

 		
 Location

 		
 Format of file path

 		
 SQL templates in annotations

 		
 Directives

 		
 Bind variable directive

 		
 Literal variable directive

 		
 Embedded variable directive

 		
 Condition directive

 		
 Loop directive

 		
 Expansion directive

 		
 Population directive

 		
 Comments

 		
 Single line comment

 		
 Multi line comment

 		
 Expression language

 		
 Literals

 		
 Comparison operators

 		
 Logical operators

 		
 Arithmetic operators

 		
 String concatenation operator

 		
 Calling instance methods

 		
 Accessing to instance fields

 		
 Calling static methods

 		
 Accessing to static fields

 		
 Using built-in functions

 		
 Using custom functions

 		
 Transaction

 		
 Configuration

 		
 Usage

 		
 Start and finish transactions

 		
 Explicit rollback

 		
 Savepoint

 		
 Building an application

 		
 Before You Start

 		
 Maven Central Repository

 		
 Build with Gradle

 		
 Build with IntelliJ IDEA

 		
 Build with Eclipse

 		
 Annotation processing

 		
 Options

 		
 Setting options in Gradle

 		
 Setting options in IntelliJ IDEA

 		
 Setting options in Eclipse

 		
 Setting options with configuration file

 		
 Lombok support

 		
 Overview

 		
 Best practices

 		
 Entity class definition

 		
 Domain class definition

 		
 Embeddable class definition

 		
 Kotlin support

 		
 Best practices

 		
 Entity classes

 		
 Domain classes

 		
 Embeddable classes

 		
 Dao interfaces

 		
 Kotlin specific Criteria API

 		
 Code Generation

 		
 Using kapt in Gradle

 		
 Sample project

 		
 SLF4J support

 		
 Overview

 		
 Gradle

 		
 Configuration

 		
 Loggers

 		
 Examples

 		
 Log all

 		
 Log all SQL statements

 		
 Log only SELECT statements

 		
 Frequently Asked Questions

 		
 General

 		
 What does “Doma” mean?

 		
 What is annotation processing?

 		
 Runtime environment

 		
 Which version of JRE does Doma support?

 		
 Which libraries are required for Doma to work?

 		
 Development environment

 		
 Which version of JDK does Doma support?

 		
 Which IDE do you recommend?

 		
 In Eclipse, the jar file of Doma is added to the Java Build Path but annotation processing doesn’t run.

 		
 Where are generated source files in annotation processing?

 		
 In Eclipse, where is the .apt_generated directory?

 		
 I get the message that the sql file is not found, but it exists.

 		
 Do you provide any code generation tools?

 		
 Features as a database access library

 		
 Does Doma generate SQL statements?

 		
 How are dynamic SQL statements executed?

 		
 Does Doma map database relationships such as one-to-one and one-to-many to Java objects?

 		
 Does Doma provide a JDBC connection pooling feature?

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/up-pressed.png

_static/up.png

